Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations

被引:67
作者
He, YN [1 ]
机构
[1] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
关键词
Navier-Stokes problem; penalty finite element method; backward Euler scheme; error estimate;
D O I
10.1090/S0025-5718-05-01751-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully discrete penalty finite element method is presented for the two-dimensional time-dependent Navier-Stokes equations. The time discretization of the penalty Navier-Stokes equations is based on the backward Euler scheme; the spatial discretization of the time discretized penalty Navier-Stokes equations is based on a finite element space pair (X-h, M-h) which satisfies some approximate assumption. An optimal error estimate of the numerical velocity and pressure is provided for the fully discrete penalty finite element method when the parameters epsilon, Delta t and h are sufficiently small.
引用
收藏
页码:1201 / 1216
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 1987, FINITE ELEMENT METHO
[2]  
BERCOVIER M, 1978, RAIRO-ANAL NUMER-NUM, V12, P211
[3]   ATTRACTORS FOR THE PENALIZED NAVIER-STOKES EQUATIONS [J].
BREFORT, B ;
GHIDAGLIA, JM ;
TEMAM, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (01) :1-21
[4]  
Brezzi F., 1984, NOTES NUMERICAL FLUI, P11, DOI DOI 10.1007/978-3-663-14169-3_2
[5]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[6]   ON CONVERGENCE OF DISCRETE APPROXIMATIONS TO NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :341-&
[7]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[8]   A fully discrete stabilized finite-element method for the time-dependent Navier-Stokes problem [J].
He, YN .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (04) :665-691
[9]  
HE YN, UNPUB STABILIZED FIN
[10]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .1. REGULARITY OF SOLUTIONS AND 2ND-ORDER ERROR-ESTIMATES FOR SPATIAL DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :275-311