A NOTE ON (σ,τ)-DERIVATIONS OF RINGS WITH INVOLUTION

被引:0
|
作者
Koc, Emine [1 ]
Golbasi, Oznur [1 ]
机构
[1] Cumhuriyet Univ, Dept Math, Sivas, Turkey
关键词
semiprime rings; prime rings; derivations; (sigma; tau)-derivations; generalized derivations; rings with involution; SEMI-PRIME RINGS; GENERALIZED DERIVATIONS; SEMIPRIME RINGS; LIE STRUCTURE; IDEALS;
D O I
10.18514/MMN.2014.476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a 2-torsion free simple *-ring and D: W R -> R be an additive mapping satisfiying D(xx) = D(x)sigma(x*) +tau(x)D(X*) for all x epsilon R: Then D is (sigma,tau)-derivation of R or R is S-4 ring. Also, if R is a 2-torsion free semiprime ring and G W R -> R is an additive mapping related with some (sigma,tau)- derivation D of R such that G(xx*) = G(X)sigma(x*) + tau(x) D(x*) for all x epsilon R; then G is generalized (sigma,tau)-derivation of R:
引用
收藏
页码:559 / 569
页数:11
相关论文
共 50 条
  • [41] Generalized Jordan derivations on Lie ideals associate with Hochschild 2-cocycles of rings
    ur Rehman N.
    Hongan M.
    Rendiconti del Circolo Matematico di Palermo, 2011, 60 (3) : 437 - 444
  • [42] A note on generalized derivations of semiprime rings
    Vukman, Joso
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 367 - 370
  • [43] A note on b-generalized (α,β)-derivations in prime rings
    Bera, Nripendu
    Dhara, Basudeb
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (05) : 731 - 743
  • [44] NOTES ON GENERALIZED DERIVATIONS OF *-PRIME RINGS
    Koc, Emine
    Rehman, Nadeem Ur
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (01) : 117 - 123
  • [45] NOTES ON LEFT IDEALS OF SEMIPRIME RINGS WITH MULTIPLICATIVE GENERALIZED (α, α) - DERIVATIONS
    Ulutas, Ercan
    Golbasi, Oznur
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (04): : 903 - 912
  • [46] Certain commutativity criteria for rings with involution involving generalized derivations
    Nejjar, Badr
    Kacha, Ali
    Mamouni, Abdellah
    Oukhtite, Lahcen
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (01) : 133 - 139
  • [47] IDENTITIES WITH DERIVATIONS IN RINGS
    Fosner, Ajda
    Fosner, Maja
    Vukman, Joso
    GLASNIK MATEMATICKI, 2011, 46 (02) : 339 - 349
  • [48] On Commutativity of Rings With Derivations
    Ashraf M.
    Rehman N.-U.
    Results in Mathematics, 2002, 42 (1-2) : 3 - 8
  • [49] Identities involving skew Lie product and a pair of generalized derivations in prime rings with involution
    Bhushan, B.
    Sandhu, G. S.
    Kumar, D.
    ARMENIAN JOURNAL OF MATHEMATICS, 2021, 13 (09): : 1 - 18
  • [50] Generalized Derivations on (Semi-)Prime Rings and Noncommutative Banach Algebras
    Wei, Feng
    Xiao, Zhankui
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2009, 122 : 171 - 190