A NOTE ON (σ,τ)-DERIVATIONS OF RINGS WITH INVOLUTION

被引:0
|
作者
Koc, Emine [1 ]
Golbasi, Oznur [1 ]
机构
[1] Cumhuriyet Univ, Dept Math, Sivas, Turkey
关键词
semiprime rings; prime rings; derivations; (sigma; tau)-derivations; generalized derivations; rings with involution; SEMI-PRIME RINGS; GENERALIZED DERIVATIONS; SEMIPRIME RINGS; LIE STRUCTURE; IDEALS;
D O I
10.18514/MMN.2014.476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a 2-torsion free simple *-ring and D: W R -> R be an additive mapping satisfiying D(xx) = D(x)sigma(x*) +tau(x)D(X*) for all x epsilon R: Then D is (sigma,tau)-derivation of R or R is S-4 ring. Also, if R is a 2-torsion free semiprime ring and G W R -> R is an additive mapping related with some (sigma,tau)- derivation D of R such that G(xx*) = G(X)sigma(x*) + tau(x) D(x*) for all x epsilon R; then G is generalized (sigma,tau)-derivation of R:
引用
收藏
页码:559 / 569
页数:11
相关论文
共 50 条
  • [31] ADDITIVITY OF JORDAN (TRIPLE) DERIVATIONS ON RINGS
    Jing, Wu
    Lu, Fangyan
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (08) : 2700 - 2719
  • [32] On rings and algebras with derivations
    Ali, Shakir
    Khan, Mohammad Salahuddin
    Khan, Abdul Nadim
    Muthana, Najat M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (06)
  • [33] On Semi-prime Rings with Generalized Derivations
    Ibtesam Alshammari
    Rania Kammoun
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 595 - 597
  • [34] On Semi-prime Rings with Generalized Derivations
    Alshammari, Ibtesam
    Kammoun, Rania
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) : 595 - 597
  • [35] Generalized derivations and nth power maps in rings
    Lanski, Charles
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (11) : 3660 - 3672
  • [36] Commutativity theorems in rings with involution
    Nejjar, B.
    Kacha, A.
    Mamouni, A.
    Oukhtite, L.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (02) : 698 - 708
  • [37] SEMIPRIME RINGS WITH HYPERCENTRAL DERIVATIONS
    LEE, TK
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (04): : 445 - 449
  • [38] ON STRONG COMMUTATIVITY PRESERVING LIKE MAPS IN RINGS WITH INVOLUTION
    Ali, Shakir
    Dar, Nadeem Ahmad
    Khan, Abdul Nadim
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 17 - 24
  • [39] Left Ideals and Pair of Generalized Derivations in Semiprime Rings
    Ali, Asma
    Khan, Shahoor
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2016, 40 (04) : 461 - 465
  • [40] PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS
    Wei, Feng
    Xiao, Zhankui
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 857 - 866