A NOTE ON (σ,τ)-DERIVATIONS OF RINGS WITH INVOLUTION

被引:0
|
作者
Koc, Emine [1 ]
Golbasi, Oznur [1 ]
机构
[1] Cumhuriyet Univ, Dept Math, Sivas, Turkey
关键词
semiprime rings; prime rings; derivations; (sigma; tau)-derivations; generalized derivations; rings with involution; SEMI-PRIME RINGS; GENERALIZED DERIVATIONS; SEMIPRIME RINGS; LIE STRUCTURE; IDEALS;
D O I
10.18514/MMN.2014.476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a 2-torsion free simple *-ring and D: W R -> R be an additive mapping satisfiying D(xx) = D(x)sigma(x*) +tau(x)D(X*) for all x epsilon R: Then D is (sigma,tau)-derivation of R or R is S-4 ring. Also, if R is a 2-torsion free semiprime ring and G W R -> R is an additive mapping related with some (sigma,tau)- derivation D of R such that G(xx*) = G(X)sigma(x*) + tau(x) D(x*) for all x epsilon R; then G is generalized (sigma,tau)-derivation of R:
引用
收藏
页码:559 / 569
页数:11
相关论文
共 50 条
  • [21] Centrally-extended generalized *-derivations on rings with involution
    Susan F. El-Deken
    H. Nabiel
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2019, 60 : 217 - 224
  • [22] ON GENERALIZED DERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Huang, Shuliang
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 771 - 776
  • [23] JORDAN TRIPLE (α, ß)*-DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION
    Rehman, Nadeem Ur
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (06): : 641 - 651
  • [24] Lie Ideals and Generalized Derivations in Semiprime Rings
    De Filippis, Vincenzo
    Rehman, Nadeem Ur
    Ansari, Abu Zaid
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (02): : 45 - 54
  • [25] A note on derivations and Jordan ideals of prime rings
    Sandhu, Gurninder S.
    Kumar, Deepak
    AIMS MATHEMATICS, 2017, 2 (04): : 580 - 585
  • [26] ON η- GENERALIZED DERIVATIONS IN RINGS WITH JORDAN INVOLUTION
    Miyan, Phool
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (03): : 585 - 593
  • [27] REMARKS ON GENERALIZED JORDAN (alpha, beta)*-DERIVATIONS OF SEMIPRIME RINGS WITH INVOLUTION
    Hongan, Motoshi
    Rehman, Nadeem Ur
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01): : 73 - 83
  • [28] On Jordan ideals and derivations in rings with involution
    Oukhtite, Lahcen
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2010, 51 (03): : 389 - 395
  • [29] A NOTE ON PRIME RINGS WITH LEFT DERIVATIONS
    Rehman, Nadeem Ur
    CONTEMPORARY RING THEORY 2011, 2012, : 123 - 128
  • [30] A note on compositions of derivations of prime rings
    Chebotar, MA
    Lee, PH
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (06) : 2965 - 2969