A NOTE ON (σ,τ)-DERIVATIONS OF RINGS WITH INVOLUTION

被引:0
作者
Koc, Emine [1 ]
Golbasi, Oznur [1 ]
机构
[1] Cumhuriyet Univ, Dept Math, Sivas, Turkey
关键词
semiprime rings; prime rings; derivations; (sigma; tau)-derivations; generalized derivations; rings with involution; SEMI-PRIME RINGS; GENERALIZED DERIVATIONS; SEMIPRIME RINGS; LIE STRUCTURE; IDEALS;
D O I
10.18514/MMN.2014.476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a 2-torsion free simple *-ring and D: W R -> R be an additive mapping satisfiying D(xx) = D(x)sigma(x*) +tau(x)D(X*) for all x epsilon R: Then D is (sigma,tau)-derivation of R or R is S-4 ring. Also, if R is a 2-torsion free semiprime ring and G W R -> R is an additive mapping related with some (sigma,tau)- derivation D of R such that G(xx*) = G(X)sigma(x*) + tau(x) D(x*) for all x epsilon R; then G is generalized (sigma,tau)-derivation of R:
引用
收藏
页码:559 / 569
页数:11
相关论文
共 15 条
[1]   Jordan alpha-centralizers in rings and some applications [J].
Ali, Shakir ;
Haetinger, Claus .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2) :71-80
[2]  
Ashraf M, 2003, INDIAN J PURE AP MAT, V34, P291
[3]   LIE IDEALS AND DERIVATIONS OF PRIME-RINGS [J].
BERGEN, J ;
HERSTEIN, IN ;
KERR, JW .
JOURNAL OF ALGEBRA, 1981, 71 (01) :259-267
[4]  
BRESAR M, 1988, P AM MATH SOC, V104, P1003
[5]   ON THE DISTANCE OF THE COMPOSITION OF 2 DERIVATIONS TO THE GENERALIZED DERIVATIONS [J].
BRESAR, M .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :89-93
[6]  
Bresar M., 1991, Glas. Mat. Ser. III, V26, P13
[7]  
Daif M., 2007, INT J ALGEBRA, V1, P551
[8]  
Herstein I., 1958, P AM MATH SOC, V8, P1104
[9]  
Herstein I.N, 1969, CHICAGO LECT MATH
[10]  
HERSTEIN IN, 1976, CHICAGO LECT MATH