SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B

被引:673
作者
Sun, Cheng [1 ]
Zhang, Fang [1 ]
Ge, Xinjian [1 ]
Yan, Tingting [1 ]
Chen, Xingmiao [1 ]
Shi, Xianglin [1 ]
Zhai, Qiwei [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Nutr Sci, Grad Sch, Shanghai 200031, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.cmet.2007.08.014
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Insulin resistance is often characterized as the most critical factor contributing to the development of type 2 diabetes. SIRT1 has been reported to be involved in the processes of glucose metabolism and insulin secretion. However, whether SIRT1 is directly involved in insulin sensitivity is still largely unknown. Here we show that SIRT1 is down-regulated in insulin-resistant cells and tissues and that knockdown or inhibition of SIRT1 induces insulin resistance. Furthermore, increased expression of SIRT1 improved insulin sensitivity, especially under insulin-resistant conditions. Similarly, resveratrol, a SIRT1 activator, enhanced insulin sensitivity in vitro in a SIRT1-dependent manner and attenuated high-fat-diet-induced insulin resistance in vivo at a dose of 2.5 mg/kg/day. Further studies demonstrated that the effect of SIRT1 on insulin resistance is mediated by repressing PTP1B transcription at the chromatin level. Taken together, the finding that SIRT1 improves insulin sensitivity has implications toward resolving insulin resistance and type 2 diabetes.
引用
收藏
页码:307 / 319
页数:13
相关论文
共 41 条
  • [1] Lentiviral-mediated RNA interference
    Abbas-Terki, T
    Blanco-Bose, W
    Déglon, N
    Pralong, W
    Aebischer, P
    [J]. HUMAN GENE THERAPY, 2002, 13 (18) : 2197 - 2201
  • [2] Protein tyrosine phosphatases in the human genome
    Alonso, A
    Sasin, J
    Bottini, N
    Friedberg, I
    Friedberg, I
    Osterman, A
    Godzik, A
    Hunter, T
    Dixon, J
    Mustelin, T
    [J]. CELL, 2004, 117 (06) : 699 - 711
  • [3] Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat
    Barzilai, N
    Banerjee, S
    Hawkins, M
    Chen, W
    Rossetti, L
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (07) : 1353 - 1361
  • [4] Resveratrol improves health and survival of mice on a high-calorie diet
    Baur, Joseph A.
    Pearson, Kevin J.
    Price, Nathan L.
    Jamieson, Hamish A.
    Lerin, Carles
    Kalra, Avash
    Prabhu, Vinayakumar V.
    Allard, Joanne S.
    Lopez-Lluch, Guillermo
    Lewis, Kaitlyn
    Pistell, Paul J.
    Poosala, Suresh
    Becker, Kevin G.
    Boss, Olivier
    Gwinn, Dana
    Wang, Mingyi
    Ramaswamy, Sharan
    Fishbein, Kenneth W.
    Spencer, Richard G.
    Lakatta, Edward G.
    Le Couteur, David
    Shaw, Reuben J.
    Navas, Placido
    Puigserver, Pere
    Ingram, Donald K.
    de Cabo, Rafael
    Sinclair, David A.
    [J]. NATURE, 2006, 444 (7117) : 337 - 342
  • [5] The Sir2 family of protein deacetylases
    Blander, G
    Guarente, L
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 : 417 - 435
  • [6] Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells
    Bordone, L
    Motta, MC
    Picard, F
    Robinson, A
    Jhala, US
    Apfeld, J
    McDonagh, T
    Lemieux, M
    McBurney, M
    Szilvasi, A
    Easlon, EJ
    Lin, SJ
    Guarente, L
    [J]. PLOS BIOLOGY, 2006, 4 (02): : 210 - 220
  • [7] Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    Cheng, HL
    Mostoslavsky, R
    Saito, S
    Manis, JP
    Gu, YS
    Patel, P
    Bronson, R
    Appella, E
    Alt, FW
    Chua, KF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) : 10794 - 10799
  • [8] The Sir2 family of protein deacetylases
    Denu, JM
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (05) : 431 - 440
  • [9] Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene
    Elchebly, M
    Payette, P
    Michaliszyn, E
    Cromlish, W
    Collins, S
    Loy, AL
    Normandin, D
    Cheng, A
    Himms-Hagen, J
    Chan, CC
    Ramachandran, C
    Gresser, MJ
    Tremblay, ML
    Kennedy, BP
    [J]. SCIENCE, 1999, 283 (5407) : 1544 - 1548
  • [10] Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans
    Fontana, L
    Meyer, TE
    Klein, S
    Holloszy, JO
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) : 6659 - 6663