Cationic Covalent Organic Framework as Separator Coating for High-Performance Lithium Selenium Disulfide Batteries

被引:7
|
作者
Wang, Jun [1 ]
Ke, Jing-Ping [1 ]
Wu, Zhen-Yi [1 ]
Zhong, Xiao-Na [1 ]
Zheng, Song-Bai [1 ]
Li, Yong-Jun [2 ]
Zhao, Wen-Hua [1 ]
机构
[1] Zhongshan Polytech, Coll Informat Engn, Zhongshan 528404, Peoples R China
[2] Guangdong Jiangmen Chinese Med Coll, Sch Lingnan Chinese Med & Pharm, Jiangmen 529000, Peoples R China
关键词
shuttle effect; Li-SeS2; battery; covalent organic framework; sieving effect; ION BATTERIES; SULFUR; CARBON; SULFIDE; SES2; COMPOSITE; SPHERES; HOST;
D O I
10.3390/coatings12070931
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Selenium disulfide that combines the advantages of S and Se elements is a new material for Li-chalcogen battery cathodes. However, like Li-S batteries, the shuttle effect seriously restricts the performance of Li-SeS2 batteries. In this work, we have synthesized a kind of nitrogen-rich lithophilic covalent organic framework (ATG-DMTZ-COF) as a separator coating material for Li-SeS2 batteries. Here, the N atom in the ATG-DMTZ-COF channel preferentially interacts with the lithium ion in the electrolyte to form N horizontal ellipsis Li bond, which significantly improves the diffusion coefficient of lithium ions during the charge and discharge. More importantly, we prove that the pore size of ATG-DMTZ-COF will decrease sharply because there is a large amount of TFSI- in the channel, and finally the shuttling of polysulfide and polyselenide is suppressed by the sieving effect. As a consequence, Li-SeS2 batteries using the ATG-DMTZ-COF separator coating show excellent performances with an initial discharge capacity of 1028.7 mAh g(-1) at 0.5 C under a SeS2 loading of 2.38 mg cm(-2). Furthermore, when the current density is 1C, the specific capacity of 404.7 mAh g(-1) can be maintained after 700 cycles.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Electronic and ionic co-conductive coating on the separator towards high-performance lithium-sulfur batteries
    Wang, Qingsong
    Wen, Zhaoyin
    Yang, Jianhua
    Jin, Jun
    Huang, Xiao
    Wu, Xiangwei
    Han, Jinduo
    JOURNAL OF POWER SOURCES, 2016, 306 : 347 - 353
  • [42] Exfoliated Triazine-Based Covalent Organic Nanosheets with Multielectron Redox for High-Performance Lithium Organic Batteries
    Lei, Zhendong
    Chen, Xiudong
    Sun, Weiwei
    Zhang, Yong
    Wang, Yong
    ADVANCED ENERGY MATERIALS, 2019, 9 (03)
  • [43] An ultrathin double-layer covalent organic framework/zwitterionic microporous polymer functional separator for high-performance lithium-sulfur battery
    Han, Lu
    Sun, Shuzheng
    Yang, Yanqin
    Yue, Junbo
    Li, Jingde
    APPLIED SURFACE SCIENCE, 2023, 610
  • [44] Covalent Organic Frameworks for Separator Modification of Lithium-Sulfur Batteries
    Wang, Yaxin
    Yang, Xuemiao
    Li, Pengyue
    Cui, Fangling
    Wang, Ruihu
    Li, Xiaoju
    MACROMOLECULAR RAPID COMMUNICATIONS, 2023, 44 (11)
  • [45] Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries
    Gu, Sui
    Wen, Zhaoyin
    Qian, Rong
    Jin, Jun
    Wang, Qingsong
    Wu, Meifen
    Zhuo, Shangjun
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (50) : 34379 - 34386
  • [46] Hydrogen-Bonded Organic Framework for High-Performance Lithium/Sodium-Iodine Organic Batteries
    Guo, Chaofei
    Han, Bo
    Sun, Weiwei
    Cao, Yingnan
    Zhang, Yifan
    Wang, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (48)
  • [47] Highly Crystalline Polyimide Covalent Organic Framework as Dual-Active-Center Cathode for High-Performance Lithium-Ion Batteries
    Yao, Liyi
    Ma, Chao
    Sun, Libo
    Zhang, Daliang
    Chen, Yuze
    Jin, Enquan
    Song, Xiaowei
    Liang, Zhiqiang
    Wang, Kai-Xue
    Journal of the American Chemical Society, 2022,
  • [48] Fluorine/sulfur-comodulated covalent organic frameworks cathode for high-performance lithium ion batteries
    Qiu, Tianyu
    Tang, Wensi
    Han, Xu
    Li, Yang
    Chen, Zhiwen
    Yao, Ruiqi
    Li, Yingqi
    Wang, Yonghui
    Li, Yangguang
    Tan, Huaqiao
    CHEMICAL ENGINEERING JOURNAL, 2023, 466
  • [49] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhang, Zhian
    Zhang, Zhiyong
    Li, Jie
    Lai, Yanqing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1709 - 1715
  • [50] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhian Zhang
    Zhiyong Zhang
    Jie Li
    Yanqing Lai
    Journal of Solid State Electrochemistry, 2015, 19 : 1709 - 1715