Cationic Covalent Organic Framework as Separator Coating for High-Performance Lithium Selenium Disulfide Batteries

被引:7
|
作者
Wang, Jun [1 ]
Ke, Jing-Ping [1 ]
Wu, Zhen-Yi [1 ]
Zhong, Xiao-Na [1 ]
Zheng, Song-Bai [1 ]
Li, Yong-Jun [2 ]
Zhao, Wen-Hua [1 ]
机构
[1] Zhongshan Polytech, Coll Informat Engn, Zhongshan 528404, Peoples R China
[2] Guangdong Jiangmen Chinese Med Coll, Sch Lingnan Chinese Med & Pharm, Jiangmen 529000, Peoples R China
关键词
shuttle effect; Li-SeS2; battery; covalent organic framework; sieving effect; ION BATTERIES; SULFUR; CARBON; SULFIDE; SES2; COMPOSITE; SPHERES; HOST;
D O I
10.3390/coatings12070931
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Selenium disulfide that combines the advantages of S and Se elements is a new material for Li-chalcogen battery cathodes. However, like Li-S batteries, the shuttle effect seriously restricts the performance of Li-SeS2 batteries. In this work, we have synthesized a kind of nitrogen-rich lithophilic covalent organic framework (ATG-DMTZ-COF) as a separator coating material for Li-SeS2 batteries. Here, the N atom in the ATG-DMTZ-COF channel preferentially interacts with the lithium ion in the electrolyte to form N horizontal ellipsis Li bond, which significantly improves the diffusion coefficient of lithium ions during the charge and discharge. More importantly, we prove that the pore size of ATG-DMTZ-COF will decrease sharply because there is a large amount of TFSI- in the channel, and finally the shuttling of polysulfide and polyselenide is suppressed by the sieving effect. As a consequence, Li-SeS2 batteries using the ATG-DMTZ-COF separator coating show excellent performances with an initial discharge capacity of 1028.7 mAh g(-1) at 0.5 C under a SeS2 loading of 2.38 mg cm(-2). Furthermore, when the current density is 1C, the specific capacity of 404.7 mAh g(-1) can be maintained after 700 cycles.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries
    Jiang, Yong
    Ma, Xiaojian
    Feng, Jinkui
    Xiong, Shenglin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (08) : 4539 - 4546
  • [22] Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries
    Gu, Sui
    Wen, Zhaoyin
    Qian, Rong
    Jin, Jun
    Wang, Qingsong
    Wu, Meifen
    Zhuo, Shangjun
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (50) : 34379 - 34386
  • [23] Dynamic Disulfide Bonds Contained Covalent Organic Framework Modified Separator as Efficient Inhibit Polysulfide Shuttling in Li-S Batteries
    Li, Mengke
    Yan, Gaojie
    Zou, Peng
    Ji, Haifeng
    Wang, Han
    Hu, Zongjie
    Yang, Zhipeng
    Feng, Yi
    Ben, Haijie
    Zhang, Xiaojie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (41) : 13638 - 13649
  • [24] A novel modified PP separator by grafting PAN for high-performance lithium-sulfur batteries
    Li, Chengbin
    Yue, Hongyun
    Wang, Qiuxian
    Shi, Mengjiao
    Zhang, Huishuang
    Li, Xiangnan
    Dong, Hongyu
    Yang, Shuting
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (02) : 1566 - 1579
  • [25] Encapsulation of Se in ordered mesoporous carbon for high-performance Lithium-selenium batteries
    Kim, Hansol
    Yu, Junwoo
    Kwon, Yelim
    Kim, Taewhan
    Jin, Mingshi
    Bulakhe, Ravindra N.
    Yoon, Won-Sub
    Kim, Ji Man
    JOURNAL OF ENERGY STORAGE, 2025, 106
  • [26] High-Performance Lithium-Sulfur Batteries With an IPA/AC Modified Separator
    Guo, Yafang
    Jiang, Aihua
    Tao, Zengren
    Yang, Zhiyun
    Zeng, Yaping
    Xiao, Jianrong
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [27] Dawson-type polyoxometalate modified separator for anchoring/catalyzing polysulfides in high-performance lithium-sulfur batteries
    Zhang, Hangyu
    Ma, Zhiyuan
    Duan, Suqin
    Liu, Yi
    Jiang, Xinyuan
    Zhou, Qiuping
    Chen, Ming
    Ni, Lubin
    Diao, Guowang
    ELECTROCHIMICA ACTA, 2022, 428
  • [28] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhang, Zhian
    Zhang, Zhiyong
    Li, Jie
    Lai, Yanqing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1709 - 1715
  • [29] Strongly Bonded Selenium/Microporous Carbon Nanofibers Composite as a High-Performance Cathode for Lithium-Selenium Batteries
    Liu, Yunxia
    Si, Ling
    Du, Yichen
    Zhou, Xiaosi
    Dai, Zhihui
    Bao, Jianchun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (49) : 27316 - 27321
  • [30] Covalent Organic Framework with Multiple Redox Active Sites for High-Performance Aqueous Calcium Ion Batteries
    Zhang, Siqi
    Zhu, You-Liang
    Ren, Siyuan
    Li, Chunguang
    Chen, Xiao-Bo
    Li, Zhenjiang
    Han, Yu
    Shi, Zhan
    Feng, Shouhua
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (31) : 17309 - 17320