CONVERGENCE OF DIRICHLET POLYNOMIALS IN BANACH SPACES

被引:8
作者
Defant, Andreas [1 ]
Sevilla Peris, Pablo [1 ,2 ,3 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
[2] Univ Politecn Valencia, Dept Matemat Aplicada, E-46010 Valencia, Spain
[3] Univ Politecn Valencia, IUMPA FTSMRL, E-46010 Valencia, Spain
关键词
Vector valued Dirichlet series; Dirichlet polynomials; Banach spaces; SERIES;
D O I
10.1090/S0002-9947-2010-05146-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent results on Dirichlet series Sigma(n) a(n) 1/n(s), s is an element of C, with coefficients a(n) in an infinite dimensional Banach space X show that the maximal width of uniform but not absolute convergence coincides for Dirichlet series and for m-homogeneous Dirichlet polynomials. But a classical non-trivial fact fue to Bohnenblust and Hille shows that if X is one dimensional, this maximal width heavily depends on the degree m of the Dirichlet polynomials. We carefully analyze this phenomenon, in particular in the setting of l(p)-spaces.
引用
收藏
页码:681 / 697
页数:17
相关论文
共 23 条
[1]  
[Anonymous], 1990, GRADUATE TEXTS MATH
[2]  
Apostol T., 1976, UNDERGRADUATE TEXTS
[3]  
BOAS HP, 1997, NOT AM MATH SOC, V44, P1430
[4]  
BOH H, 1913, J REINE ANGEW MATH, V143, P203
[5]  
Bohnenblust HF., 1931, Ann. Math., V32, P600, DOI [DOI 10.2307/1968255, 10.2307/1968255]
[6]  
Bohr H., 1913, NACHR GES WISS GO MP, P441
[7]   Multilinear extensions of Grothendieck's theorem [J].
Bombal, F ;
Pérez-García, D ;
Villanueva, I .
QUARTERLY JOURNAL OF MATHEMATICS, 2004, 55 :441-450
[8]  
Defant A, 2003, J REINE ANGEW MATH, V557, P173
[9]   Unconditional basis and Gordon-Lewis constants for spaces of polynomials [J].
Defant, A ;
Díaz, JC ;
García, D ;
Maestre, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 181 (01) :119-145
[10]  
Defant A., 1993, N HOLLAND MATH STUDI, V176