Osmosensing by WNK Kinases

被引:19
作者
Akella, Radha [1 ]
Humphreys, John M. [1 ]
Sekulski, Kamil [1 ]
He, Haixia [1 ]
Durbacz, Mateusz [1 ]
Chakravarthy, Srinivas [4 ]
Liwocha, Joanna [2 ]
Mohammed, Zuhair J. [5 ]
Brautigam, Chad A. [1 ,3 ]
Goldsmith, Elizabeth J. [1 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Biophys, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Mol Biol, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Dept Microbiol, Dallas, TX 75390 USA
[4] IIT, APS, Dept Biol Chem & Phys Sci, Argonne, IL 60439 USA
[5] Baylor Coll Med, Houston, TX 77030 USA
关键词
CL COTRANSPORT PROTEIN; SMALL-ANGLE SCATTERING; CATALYTIC DOMAIN; BLOOD-PRESSURE; X-RAY; HYDRATION; CRYSTAL; PHOSPHORYLATION; HYPERTENSION; ACTIVATION;
D O I
10.1091/mbc.E20-01-0089
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
With No Lysine (K) WNK kinases regulate electro-neutral cotransporters that are controlled by osmotic stress and chloride. We showed previously that autophosphorylation of WNK1 is inhibited by chloride, raising the possibility that WNKs are activated by osmotic stress. Here we demonstrate that unphosphorylated WNK isoforms 3 and 1 autophosphorylate in response to osmotic pressure in vitro, applied with the crowding agent polyethylene glycol (PEG)400 or osmolyte ethylene glycol (EG), and that this activation is opposed by chloride. Small angle x-ray scattering of WNK3 in the presence and absence of PEG400, static light scattering in EG, and crystallography of WNK1 were used to understand the mechanism. Osmosensing in WNK3 and WNK1 appears to occur through a conformational equilibrium between an inactive, unphosphorylated, chloride-binding dimer and an autophosphorylation-competent monomer. An improved structure of the inactive kinase domain of WNK1, and a comparison with the structure of a monophosphorylated form of WNK1, suggests that large cavities, greater hydration, and specific bound water may participate in the osmosensing mechanism. Our prior work showed that osmolytes have effects on the structure of phosphorylated WNK1, suggestive of multiple stages of osmotic regulation in WNKs.
引用
收藏
页码:1614 / 1623
页数:10
相关论文
共 50 条
  • [41] Loss of WNK3 is compensated for by the WNK1/SPAK axis in the kidney of the mouse
    Mederle, Katharina
    Mutig, Kerim
    Paliege, Alexander
    Carota, Isabel
    Bachmann, Sebastian
    Castrop, Hayo
    Oppermann, Mona
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2013, 304 (09) : F1198 - F1209
  • [42] Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases
    Ponce-Coria, Jose
    San-Cristobal, Pedro
    Kahle, Kristopher T.
    Vazquez, Norma
    Pacheco-Alvarez, Diana
    de los Heros, Paola
    Juarez, Patricia
    Munoz, Eva
    Michel, Gabriela
    Bobadilla, Norma A.
    Gimenez, Ignacio
    Lifton, Richard P.
    Hebert, Steven C.
    Gamba, Gerardo
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (24) : 8458 - 8463
  • [43] C-terminally truncated, kidney-specific variants of the WNK4 kinase lack several sites that regulate its activity
    Rafael Murillo-De-Ozores, Adrian
    Rodriguez-Gama, Alejandro
    Bazua-Valenti, Silvana
    Leyva-Rios, Karla
    Vazquez, Norma
    Pacheco-Alvarez, Diana
    De La Rosa-Velazquez, Inti A.
    Wengi, Agnieszka
    Stone, Kathryn L.
    Zhang, Junhui
    Loffing, Johannes
    Lifton, Richard P.
    Yang, Chao-Ling
    Ellison, David H.
    Gamba, Gerardo
    Castaneda-Bueno, Maria
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (31) : 12209 - 12221
  • [44] WNK pathways in cancer signaling networks
    Kankanamalage, Sachith Gallolu
    Karra, Aroon S.
    Cobb, Melanie H.
    CELL COMMUNICATION AND SIGNALING, 2018, 16
  • [45] Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent
    Boyd-Shiwarski, Cary R.
    Shiwarski, Daniel J.
    Roy, Ankita
    Namboodiri, Hima N.
    Nkashama, Lubika J.
    Xie, Jian
    McClain, Kara L.
    Marciszyn, Allison
    Kleyman, Thomas R.
    Tan, Roderick J.
    Stolz, Donna B.
    Puthenveedu, Manojkumar A.
    Huang, Chou-Long
    Subramanya, Arohan R.
    MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (04) : 499 - 509
  • [46] WNK3 and WNK4 exhibit opposite sensitivity with respect to cell volume and intracellular chloride concentration
    Pacheco-Alvarez, Diana
    Carrillo-Perez, Diego Luis
    Mercado, Adriana
    Leyva-Rios, Karla
    Moreno, Erika
    Hernandez-Mercado, Elisa
    Castaneda-Bueno, Maria
    Vazquez, Norma
    Gamba, Gerardo
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2020, 319 (02): : C371 - C380
  • [47] Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4
    Castaneda-Bueno, Maria
    Arroyo, Juan Pablo
    Zhang, Junhui
    Puthumana, Jeremy
    Yarborough, Orlando, III
    Shibata, Shigeru
    Rojas-Vega, Lorena
    Gamba, Gerardo
    Rinehart, Jesse
    Lifton, Richard P.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (05) : E879 - E886
  • [48] Genome-wide identification and evolution of WNK kinases in Bambusoideae and transcriptional profiling during abiotic stress in Phyllostachys edulis
    Liu, RongXiu
    Vasupalli, Naresh
    Hou, Dan
    Stalin, Antony
    Wei, Hantian
    Zhang, Huicong
    Lin, Xinchun
    PEERJ, 2022, 10
  • [49] Multistep regulation of autophagy by WNK1
    Kankanamalage, Sachith Gallolu
    Lee, A-Young
    Wichaidit, Chonlarat
    Lorente-Rodriguez, Andres
    Shah, Akansha M.
    Stippec, Steve
    Whitehurst, Angelique W.
    Cobb, Melanie H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (50) : 14342 - 14347
  • [50] WNK signalling pathways in blood pressure regulation
    Murthy, Meena
    Kurz, Thimo
    O'Shaughnessy, Kevin M.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2017, 74 (07) : 1261 - 1280