MULTI-VIEW SUBSPACE CLUSTERING WITH LOCAL AND GLOBAL INFORMATION

被引:2
|
作者
Duan, Yi-Qiang [1 ]
Yuan, Hao-Liang [1 ]
Lai, Loi Lei [1 ]
He, Ben [2 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
来源
PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR) | 2021年
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Self-representation learning; Graph learning;
D O I
10.1109/ICWAPR54887.2021.9736151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering can mine the underlying structure of multi-view data and has attracted increasing attention. Most existing multi-view clustering methods either construct the similarity matrix from the global level through self-representation learning or construct the similarity matrix from the local level through graph learning. Spectral clustering method can be used to yield the clustering results based on the similarity matrix. However, the similarity matrix that only considers global information or local information is not robust. Moreover, separating the similarity matrix learning and clustering as two steps may lead to sub-optimal clustering results. To address these issues, we propose in this paper, a multi-view subspace clustering with local and global information (MVSCLG) method. Our method combines the self-representation learning and graph learning to learn a similarity matrix with global and local information, and simultaneously utilizes the spectral decomposition and the spectral rotation techniques to yield the clustering results. We also develop an effective optimization algorithm to solve the resulting optimization problem. The effectiveness and superiority of this method are verified on four multi-view benchmark data sets.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [1] Multi-view subspace clustering networks with local and global graph information
    Zheng, Qinghai
    Zhu, Jihua
    Ma, Yuanyuan
    Li, Zhongyu
    Tian, Zhiqiang
    NEUROCOMPUTING, 2021, 449 : 15 - 23
  • [2] Global and Local Consistent Multi-view Subspace Clustering
    Fan, Yanbo
    He, Ran
    Hu, Bao-Gang
    PROCEEDINGS 3RD IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION ACPR 2015, 2015, : 564 - 568
  • [3] Fusing Local and Global Information for One-Step Multi-View Subspace Clustering
    Duan, Yiqiang
    Yuan, Haoliang
    Lai, Chun Sing
    Lai, Loi Lei
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [4] Multi-View Fuzzy Classification With Subspace Clustering and Information Granules
    Hu, Xingchen
    Liu, Xinwang
    Pedrycz, Witold
    Liao, Qing
    Shen, Yinghua
    Li, Yan
    Wang, Siwei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11642 - 11655
  • [5] Multi-View MERA Subspace Clustering
    Long, Zhen
    Zhu, Ce
    Chen, Jie
    Li, Zihan
    Ren, Yazhou
    Liu, Yipeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3102 - 3112
  • [6] Adaptive Multi-View Subspace Clustering
    Tang Q.
    Zhang Y.
    He S.
    Zhou Z.
    Zhang, Yulong, 1600, Xi'an Jiaotong University (55): : 102 - 112
  • [7] Feature concatenation multi-view subspace clustering
    Zheng, Qinghai
    Zhu, Jihua
    Li, Zhongyu
    Pang, Shanmin
    Wang, Jun
    Li, Yaochen
    NEUROCOMPUTING, 2020, 379 : 89 - 102
  • [8] Scalable Affine Multi-view Subspace Clustering
    Wanrong Yu
    Xiao-Jun Wu
    Tianyang Xu
    Ziheng Chen
    Josef Kittler
    Neural Processing Letters, 2023, 55 : 4679 - 4696
  • [9] Scalable Affine Multi-view Subspace Clustering
    Yu, Wanrong
    Wu, Xiao-Jun
    Xu, Tianyang
    Chen, Ziheng
    Kittler, Josef
    NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4679 - 4696
  • [10] Subspace-Contrastive Multi-View Clustering
    Fu, Lele
    Huang, Sheng
    Zhang, Lei
    Yang, Jinghua
    Zheng, Zibin
    Zhang, Chuanfu
    Chen, Chuan
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (09)