LOCAL GRADIENT ESTIMATES FOR HEAT EQUATION ON RCD*(k, n) METRIC MEASURE SPACES

被引:2
作者
Huang, Jia-Cheng [1 ]
机构
[1] Fudan Univ, Sch Math Sci, 220 Handan Rd, Shanghai 86200433, Peoples R China
基金
中国博士后科学基金;
关键词
CURVATURE-DIMENSION CONDITION; LI-YAU INEQUALITY; RICCI CURVATURE; HARNACK INEQUALITIES; MONOTONICITY FORMULA; LIPSCHITZ FUNCTIONS; ALEXANDROV SPACES; DIRICHLET SPACES; MANIFOLDS; EQUIVALENCE;
D O I
10.1090/proc/14185
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will establish a local gradient estimate and a Liouville type theorem for weak solutions of the heat equation on RCD*(K, N) metric measure spaces.
引用
收藏
页码:5391 / 5407
页数:17
相关论文
共 46 条
[1]  
Ambrosio L, 2016, J GEOM ANAL, V26, P24, DOI 10.1007/s12220-014-9537-7
[2]   Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
INVENTIONES MATHEMATICAE, 2014, 195 (02) :289-391
[3]   Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (03) :969-996
[4]   BAKRY-EMERY CURVATURE-DIMENSION CONDITION AND RIEMANNIAN RICCI CURVATURE BOUNDS [J].
Ambrsio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
ANNALS OF PROBABILITY, 2015, 43 (01) :339-404
[5]   Localization and tensorization properties of the curvature-dimension condition for metric measure spaces [J].
Bacher, Kathrin ;
Sturm, Karl-Theodor .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (01) :28-56
[6]  
Bakry D, 1999, REV MAT IBEROAM, V15, P143
[7]  
Bakry D, 2006, REV MAT IBEROAM, V22, P683
[8]   THE LI-YAU INEQUALITY AND APPLICATIONS UNDER A CURVATURE-DIMENSION CONDITION [J].
Bakry, Dominique ;
Bolley, Francois ;
Gentil, Ivan .
ANNALES DE L INSTITUT FOURIER, 2017, 67 (01) :397-421
[9]  
Bauer F, 2015, J DIFFER GEOM, V99, P359
[10]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517