Towards a sparse low-rank regression model for memorability prediction of images

被引:3
|
作者
Chu, Jinghui [1 ]
Gu, Huimin [1 ]
Su, Yuting [1 ]
Jing, Peiguang [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 30072, Peoples R China
关键词
Image memorability; Sparse regression; Low-rank; RECURRENT NEURAL-NETWORK; LONG-TERM-MEMORY; REPRESENTATION; GRAPH;
D O I
10.1016/j.neucom.2018.09.052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, it is inevitable to experience plenty of images in everyday life. Some of them are remembered for a long time while others are forgotten after only a glance. It has been proved that memorability is an intrinsically stable property of images which measures the degree to which images are remembered. Although some work have been conducted to investigate the factors that make an image memorable, yet studies on designing robust models to predict image memorability have rarely been reported. Inspired by the good property of Low-Rank Representation (LRR) in dealing with noisy data, in this paper we propose a sparse low-rank regression framework for image memorability prediction, in which a projection matrix, applied to capture the global low-rank structure embedded in original feature space, and a sparse coefficient vector, applied to build connections between images and their memorability scores, are jointly learnt to guarantee the superior performance. In particular, to enable our proposed approach to discover discriminant attribute features automatically, we impose a structured sparsity constraint on the reconstruction error matrix against the existence of noisy attributes. We develop an alternating direction algorithm by applying augmented Lagrangian multipliers method to solve the objective function of our model. Experiments conducted on two publicly available memorability datasets demonstrates the effectiveness of the proposed method. Source code is freely available: https://www.github.com/HodorHoldthedoor/image-memorability. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:357 / 368
页数:12
相关论文
共 50 条
  • [41] Compressing by Learning in a Low-Rank and Sparse Decomposition Form
    Guo, Kailing
    Xie, Xiaona
    Xu, Xiangmin
    Xing, Xiaofen
    IEEE ACCESS, 2019, 7 : 150823 - 150832
  • [42] Low-rank sparse subspace clustering with a clean dictionary
    You, Cong-Zhe
    Shu, Zhen-Qiu
    Fan, Hong-Hui
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2021, 15
  • [43] Low-rank matrix regression for image feature extraction and feature selection
    Yuan, Haoliang
    Li, Junyu
    Lai, Loi Lei
    Tang, Yuan Yan
    INFORMATION SCIENCES, 2020, 522 : 214 - 226
  • [44] Robust to Rank Selection: Low-Rank Sparse Tensor-Ring Completion
    Yu, Jinshi
    Zhou, Guoxu
    Sun, Weijun
    Xie, Shengli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (05) : 2451 - 2465
  • [45] Combining graph embedding and sparse regression with structure low-rank representation for semi-supervised learning
    You, Cong-Zhe
    Palade, Vasile
    Wu, Xiao-Jun
    COMPLEX ADAPTIVE SYSTEMS MODELING, 2016, 4
  • [46] A Remote Sensing Image Destriping Model Based on Low-Rank and Directional Sparse Constraint
    Wu, Xiaobin
    Qu, Hongsong
    Zheng, Liangliang
    Gao, Tan
    Zhang, Ziyu
    REMOTE SENSING, 2021, 13 (24)
  • [47] Multivariate response regression with low-rank and generalized sparsity
    Youngjin Cho
    Seyoung Park
    Journal of the Korean Statistical Society, 2022, 51 : 847 - 867
  • [48] Low-rank discriminative regression learning for image classification
    Lu, Yuwu
    Lai, Zhihui
    Wong, Wai Keung
    Li, Xuelong
    NEURAL NETWORKS, 2020, 125 : 245 - 257
  • [49] Joint low-rank and sparse decomposition for infrared and visible image sequence fusion
    Wang, Wenqing
    Zhang, Jiqian
    Liu, Han
    Xiong, Wei
    Zhang, Chunli
    INFRARED PHYSICS & TECHNOLOGY, 2023, 133
  • [50] Hyperspectral anomaly detection based on weighted low-rank sparse dictionary learning
    Li, Xin
    Yuan, Yuan
    NEUROCOMPUTING, 2024, 610