Towards a sparse low-rank regression model for memorability prediction of images

被引:3
|
作者
Chu, Jinghui [1 ]
Gu, Huimin [1 ]
Su, Yuting [1 ]
Jing, Peiguang [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 30072, Peoples R China
关键词
Image memorability; Sparse regression; Low-rank; RECURRENT NEURAL-NETWORK; LONG-TERM-MEMORY; REPRESENTATION; GRAPH;
D O I
10.1016/j.neucom.2018.09.052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, it is inevitable to experience plenty of images in everyday life. Some of them are remembered for a long time while others are forgotten after only a glance. It has been proved that memorability is an intrinsically stable property of images which measures the degree to which images are remembered. Although some work have been conducted to investigate the factors that make an image memorable, yet studies on designing robust models to predict image memorability have rarely been reported. Inspired by the good property of Low-Rank Representation (LRR) in dealing with noisy data, in this paper we propose a sparse low-rank regression framework for image memorability prediction, in which a projection matrix, applied to capture the global low-rank structure embedded in original feature space, and a sparse coefficient vector, applied to build connections between images and their memorability scores, are jointly learnt to guarantee the superior performance. In particular, to enable our proposed approach to discover discriminant attribute features automatically, we impose a structured sparsity constraint on the reconstruction error matrix against the existence of noisy attributes. We develop an alternating direction algorithm by applying augmented Lagrangian multipliers method to solve the objective function of our model. Experiments conducted on two publicly available memorability datasets demonstrates the effectiveness of the proposed method. Source code is freely available: https://www.github.com/HodorHoldthedoor/image-memorability. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:357 / 368
页数:12
相关论文
共 50 条
  • [31] Sparse and Low-Rank Constrained Tensor Factorization for Hyperspectral Image Unmixing
    Zheng, Pan
    Su, Hongjun
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 1754 - 1767
  • [32] l0-Motivated Low-Rank Sparse Subspace Clustering
    Brbic, Maria
    Kopriva, Ivica
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) : 1711 - 1725
  • [33] Sparse and low-rank recovery using adaptive thresholding
    Zarmehi, Nematollah
    Marvasti, Farokh
    DIGITAL SIGNAL PROCESSING, 2018, 73 : 145 - 152
  • [34] Low-Rank Sparse Preserving Projections for Dimensionality Reduction
    Xie, Luofeng
    Yin, Ming
    Yin, Xiangyun
    Liu, Yun
    Yin, Guofu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5261 - 5274
  • [35] Robust sparse low-rank embedding for image reduction
    Liu, Zhonghua
    Lu, Yue
    Lai, Zhihui
    Ou, Weihua
    Zhang, Kaibing
    APPLIED SOFT COMPUTING, 2021, 113
  • [36] Sparse Low-Rank Preserving Projection for Dimensionality Reduction
    Liu, Zhonghua
    Wang, Jingjing
    Liu, Gang
    Pu, Jiexin
    IEEE ACCESS, 2019, 7 : 22941 - 22951
  • [37] Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition
    Lu, Lijun
    Ma, Xiaomian
    Mohy-ud-Din, Hassan
    Ma, Jianhua
    Feng, Qianjin
    Rahmim, Arman
    Chen, Wufan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 154 : 57 - 69
  • [38] SPIKE SORTING BASED ON LOW-RANK AND SPARSE REPRESENTATION
    Huang, Libo
    Ling, Bingo Wing-Kuen
    Zeng, Yan
    Gan, Lu
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [39] Moire Pattern Removal From Texture Images via Low-rank and Sparse Matrix Decomposition
    Liu, Fanglei
    Yang, Jingyu
    Yue, Huanjing
    2015 VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2015,
  • [40] Latent Space Sparse and Low-Rank Subspace Clustering
    Patel, Vishal M.
    Hien Van Nguyen
    Vidal, Rene
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (04) : 691 - 701