Automorphisms and isomorphisms of Chevalley groups and algebras

被引:3
|
作者
Klyachko, Anton A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Leninskie Gory 119991, MSU, Russia
基金
俄罗斯基础研究基金会;
关键词
Chevalley groups; Chevalley algebras; Automorphisms; Isomorphisms; RINGS;
D O I
10.1016/j.jalgebra.2009.08.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An adjoint Chevalley group of rank at least 2 over a rational algebra (or a similar ring), its elementary subgroup, and the corresponding Lie ring have the same automorphism group. These automorphisms are explicitly described. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2608 / 2619
页数:12
相关论文
共 50 条
  • [31] Automorphisms of algebras of smooth functions and equivalent functions
    Cabello Sanchez, Felix
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (02) : 216 - 221
  • [32] Isometric Jordan Isomorphisms of Group Algebras
    Alaminos, J.
    Extremera, J.
    Godoy, C.
    Villena, A. R.
    RESULTS IN MATHEMATICS, 2024, 79 (05)
  • [33] Computably enumerable algebras, their expansions, and isomorphisms
    Khoussainov, B
    Lempp, S
    Slaman, TA
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2005, 15 (03) : 437 - 454
  • [34] Commutator width in Chevalley groups
    Hazrat, Roozbeh
    Stepanov, Alexei
    Vavilov, Nikolai
    Zhang, Zuhong
    NOTE DI MATEMATICA, 2013, 33 (01): : 139 - 170
  • [35] LOCAL AUTOMORPHISMS OF SEMISIMPLE ALGEBRAS AND GROUP ALGEBRAS
    Wang Dengyin
    Guan Qi
    Zhang Dongju
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1600 - 1612
  • [36] Presentations for certain Chevalley groups
    Timmesfeld, FG
    GEOMETRIAE DEDICATA, 1998, 73 (01) : 85 - 117
  • [37] Isomorphisms of noncommutative log-algebras
    Abdullaev, Rustam
    Azizov, Azizkhon
    POSITIVITY, 2024, 28 (05)
  • [38] Isomorphisms of graded skew Clifford algebras
    Chandler, Richard G.
    Engel, Nicholas
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (05): : 871 - 878
  • [39] Lattice isomorphisms between projection lattices of von Neumann algebras
    Mori, Michiya
    FORUM OF MATHEMATICS SIGMA, 2020, 8
  • [40] FROBENIUS GROUPS AS GROUPS OF AUTOMORPHISMS
    Makarenko, N. Yu.
    Shumyatsky, Pavel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (10) : 3425 - 3436