Automorphisms and isomorphisms of Chevalley groups and algebras

被引:3
|
作者
Klyachko, Anton A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Leninskie Gory 119991, MSU, Russia
基金
俄罗斯基础研究基金会;
关键词
Chevalley groups; Chevalley algebras; Automorphisms; Isomorphisms; RINGS;
D O I
10.1016/j.jalgebra.2009.08.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An adjoint Chevalley group of rank at least 2 over a rational algebra (or a similar ring), its elementary subgroup, and the corresponding Lie ring have the same automorphism group. These automorphisms are explicitly described. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2608 / 2619
页数:12
相关论文
共 50 条
  • [21] Isomorphisms of commutative regular algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Karimov, Khakimbek
    POSITIVITY, 2022, 26 (01)
  • [22] Ш-rigidity of Chevalley groups over local rings
    Bunina, Elena
    Kunyavskii, Boris
    JOURNAL OF GROUP THEORY, 2025,
  • [23] Uniform bounded elementary generation of Chevalley groups
    Kunyavskii, Boris
    Plotkin, Eugene
    Vavilov, Nikolai
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [24] On the length of commutators in Chevalley groups
    Stepanov, Alexei
    Vavilov, Nikolai
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 185 (01) : 253 - 276
  • [25] Presentations for Certain Chevalley Groups
    F. G. Timmesfeld
    Geometriae Dedicata, 1998, 73 : 85 - 117
  • [26] Minuscule weights and Chevalley groups
    Geck, Meinolf
    FINITE SIMPLE GROUPS: THIRTY YEARS OF THE ATLAS AND BEYOND, 2017, 694 : 159 - 176
  • [27] The Niltriangular Subalgebra of the Chevalley Algebra: the Enveloping Algebra, Ideals, and Automorphisms
    Levchuk, V. M.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 23 - 27
  • [28] WEIGHT ELEMENTS OF CHEVALLEY GROUPS
    Vavilov, N. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2009, 20 (01) : 23 - 57
  • [29] Relative subgroups in Chevalley groups
    Hazrat, R.
    Petrov, V.
    Vavilov, N.
    JOURNAL OF K-THEORY, 2010, 5 (03) : 603 - 618
  • [30] AUTOMORPHISMS OF TOROIDAL LIE ALGEBRAS AND THEIR CENTRAL QUOTIENTS
    Pianzola, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2002, 1 (01) : 113 - 121