Molecular electronic refrigeration against parallel phonon heat leakage channels

被引:3
作者
Tabatabaei, Fatemeh [1 ]
Merabia, Samy [1 ]
Gotsmann, Bernd [2 ]
Prunnila, Mika [3 ]
Niehaus, Thomas A. [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Inst Lumiere Matiere, CNRS, Villeurbanne, France
[2] IBM Res Europe Zurich, Ruschlikon, Switzerland
[3] VTT Tech Res Ctr Finland Ltd, Tietotie 3, FI-02150 Espoo, Finland
基金
芬兰科学院;
关键词
COMPLEX MATERIALS; FORCE-FIELD; CONDUCTANCE; THERMOPOWER; SIMULATION; TRANSPORT; JUNCTIONS; THERMOELECTRICITY; PARAMETERS;
D O I
10.1039/d2nr00529h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to their structured density of states, molecular junctions provide rich resources to filter and control the flow of electrons and phonons. Here we compute the out of equilibrium current-voltage characteristics and dissipated heat of some recently synthesized oligophenylenes (OPE3) using the Density Functional based Tight-Binding (DFTB) method within Non-Equilibrium Green's Function Theory (NEGF). We analyze the Peltier cooling power for these molecular junctions as function of a bias voltage and investigate the parameters that lead to optimal cooling performance. In order to quantify the attainable temperature reduction, an electro-thermal circuit model is presented, in which the key electronic and thermal transport parameters enter. Overall, our results demonstrate that the studied OPE3 devices are compatible with temperature reductions of several K. Based on the results, some strategies to enable high performance devices for cooling applications are briefly discussed.
引用
收藏
页码:11003 / 11011
页数:9
相关论文
共 64 条
[1]  
[Anonymous], 2010, Molecular Electronics: An Introduction to Theory and Experiment
[2]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[3]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[4]   Peltier cooling in molecular junctions [J].
Cui, Longji ;
Miao, Ruijiao ;
Wang, Kun ;
Thompson, Dakotah ;
Angela Zotti, Linda ;
Carlos Cuevas, Juan ;
Meyhofer, Edgar ;
Reddy, Pramod .
NATURE NANOTECHNOLOGY, 2018, 13 (02) :122-+
[5]   Quantitative Current-Voltage Characteristics in Molecular Junctions from First Principles [J].
Darancet, Pierre ;
Widawsky, Jonathan R. ;
Choi, Hyoung Joon ;
Venkataraman, Latha ;
Neaton, Jeffrey B. .
NANO LETTERS, 2012, 12 (12) :6250-6254
[6]   Electronic conductance and thermopower of single-molecule junctions of oligo(phenyleneethynylene) derivatives (vol 12, pg 18908, 2020) [J].
Dekkiche, Herve ;
Gemma, Andrea ;
Tabatabaei, Fatemeh ;
Batsanov, Andrei S. ;
Niehaus, Thomas ;
Gotsmann, Bernd ;
Bryce, Martin R. .
NANOSCALE, 2021, 13 (08) :4685-4686
[7]   Electronic conductance and thermopower of single-molecule junctions of oligo(phenyleneethynylene) derivatives [J].
Dekkiche, Herve ;
Gemma, Andrea ;
Tabatabaei, Fatemeh ;
Batsanov, Andrei S. ;
Niehaus, Thomas ;
Gotsmann, Bernd ;
Bryce, Martin R. .
NANOSCALE, 2020, 12 (36) :18908-18917
[8]   Advanced Thermoelectric Materials for Flexible Cooling Application [J].
Ding, Jiamin ;
Zhao, Wenrui ;
Jin, Wenlong ;
Di, Chong-an ;
Zhu, Daoben .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (20)
[9]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[10]   Three-terminal thermoelectric transport through a molecular junction [J].
Entin-Wohlman, O. ;
Imry, Y. ;
Aharony, A. .
PHYSICAL REVIEW B, 2010, 82 (11)