Specific loss power measurements by calorimetric and thermal methods on γ-Fe2O3 nanoparticles for magnetic hyperthermia

被引:21
|
作者
Coisson, Marco [1 ]
Barrera, Gabriele [1 ]
Appino, Carlo [1 ]
Celegato, Federica [1 ]
Martino, Luca [1 ]
Safronov, Alexander P. [2 ,3 ]
Kurlyandskaya, Galina V. [2 ,4 ]
Tiberto, Paola [1 ]
机构
[1] INRIM, Nanosci & Mat Div, Turin, Italy
[2] Ural Fed Univ, Ekaterinburg, Russia
[3] RAS, UD, Inst Electrophys, Ekaterinburg, Russia
[4] Univ Basque Country, Leioa, Spain
基金
欧盟地平线“2020”; 俄罗斯科学基金会;
关键词
Magnetic hyperthermia; Fe-oxide; Magnetic nanoparticles; VECTOR HYSTERESIS MODEL; MAGHEMITE NANOPARTICLES; SURFACE; PERMEABILITY; ANISOTROPY; PARTICLES;
D O I
10.1016/j.jmmm.2018.10.107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Specific loss power has been measured on gamma-Fe2O3 nanoparticles dispersed in water by means of several techniques, i.e. heat flow in a calorimeter, hyperthermia, and static and dynamic hysteresis loops. Static hysteresis loops as a function of the maximum applied field underestimate the power losses as dynamic effects are not exploited, but turned out to be a valuable tool to prove the consistency of specific loss power measurements obtained by the other techniques over a wide range of applied magnetic field intensities. A temperature-dependence of the specific loss power has been taken into account in hyperthermia measurements performed with a fully modelled non adiabatic experimental setup. Simple mean-field theoretical models (interacting superparamagnetic, modified Stoner-Wohlfarth) have been exploited to reproduce the static energy losses of the particles.
引用
收藏
页码:403 / 409
页数:7
相关论文
共 50 条
  • [21] γ-Fe2O3 nanoflowers as efficient magnetic hyperthermia and photothermal agent
    Shaw, S.K.
    Kailashiya, J.
    Gangwar, A.
    Alla, S.K.
    Gupta, Santosh K.
    Prajapat, C.L.
    Meena, Sher Singh
    Dash, D.
    Maiti, P.
    Prasad, N.K.
    Applied Surface Science, 2021, 560
  • [22] γ-Fe2O3 nanoflowers as efficient magnetic hyperthermia and photothermal agent
    Shaw, S. K.
    Kailashiya, J.
    Gangwar, A.
    Alla, S. K.
    Gupta, Santosh K.
    Prajapat, C. L.
    Meena, Sher Singh
    Dash, D.
    Maiti, P.
    Prasad, N. K.
    APPLIED SURFACE SCIENCE, 2021, 560
  • [23] Comparative heating efficiency of hematite (α-Fe2O3) and nickel ferrite nanoparticles for magnetic hyperthermia application
    Lemine, O. M.
    Madkhali, N.
    Hjiri, M.
    All, N. Abdel
    Aida, M. S.
    CERAMICS INTERNATIONAL, 2020, 46 (18) : 28821 - 28827
  • [24] γ-Fe2O3 nanoparticles embedded in nanohydroxyapatite matrix for magnetic hyperthermia and in vitro osteoblast cell studies
    Ramos-Guivar, Juan A.
    Morales, Marco A.
    Litterst, F. Jochen
    CERAMICS INTERNATIONAL, 2020, 46 (08) : 10658 - 10666
  • [25] Effects of thermal treatments on structural and magnetic properties of acicular α-Fe2O3 nanoparticles
    ICMAT, CNR, Rome, Italy
    不详
    不详
    Nanostruct Mater, 6 (797-803):
  • [26] Effects of thermal treatments on structural and magnetic properties of acicular α-Fe2O3 nanoparticles
    Suber, L
    Fiorani, D
    Imperatori, P
    Foglia, S
    Montone, A
    Zysler, R
    NANOSTRUCTURED MATERIALS, 1999, 11 (06): : 797 - 803
  • [27] A novel hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous magnetic nanoparticles
    Jayanthi, S. Amala
    Nathan, D. Muthu Gnana Theresa
    Jayashainy, J.
    Sagayaraj, P.
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 162 : 316 - 325
  • [28] Synthesis and physical characterization of γ-Fe2O3 and (α+γ)-Fe2O3 nanoparticles
    P. Bhavani
    N. Ramamanohar Reddy
    I. Venkata Subba Reddy
    Journal of the Korean Physical Society, 2017, 70 : 150 - 154
  • [29] Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia
    Hu, Ji
    Wang, Demin
    Wang, Jiangtao
    Wang, Jianmin
    ENVIRONMENTAL POLLUTION, 2012, 162 : 216 - 222
  • [30] Magnetic properties of mechanochemically synthesized γ-Fe2O3 nanoparticles
    Tsuzuki, Takuya
    Schaeffel, Franziska
    Muroi, Michihito
    McCormick, Paul G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (17) : 5420 - 5425