Friezes

被引:59
作者
Assem, Ibrahim [2 ]
Reutenauer, Christophe [1 ]
Smith, David [2 ]
机构
[1] Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, Canada
[2] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
关键词
Rationality; Periodicity; Dynkin diagrams; Euclidean diagrams; Cluster algebras; Positivity; Laurent phenomenon; SL2; tilings; Frieze patterns; CLUSTER ALGEBRAS;
D O I
10.1016/j.aim.2010.05.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The construction of friezes is motivated by the theory of cluster algebras. It gives, for each acyclic quiver, a family of integer sequences, one for each vertex. We conjecture that these sequences satisfy linear recursions if and only if the underlying graph is a Dynkin or an Euclidean (affine) graph. We prove the "only if" part, and show that the "if" part holds true for all non-exceptional Euclidean graphs, leaving a finite number of finite number of cases to be checked. Coming back to cluster algebras, the methods involved allow us to give formulas for the cluster variables in case A(m) and (A) over tilde (m); the novelty is that these formulas use 2 by 2 matrices over the semiring of Laurent polynomials generated by the initial variables (which explains simultaneously positivity and the Laurent phenomenon). One tool involved consists of the SL2-tilings of the plane, which are particular cases of T-systems of Mathematical Physics. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3134 / 3165
页数:32
相关论文
共 34 条
[1]  
[Anonymous], ACTA ARITH
[2]  
ASSEM I, FRIEZES STRING UNPUB
[3]  
ASSEM I, ARXIV10030197
[4]   Frieze patterns for punctured discs [J].
Baur, Karin ;
Marsh, Robert J. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 30 (03) :349-379
[5]   CARTAN MATRICES WIT NULL ROOTS AND FINITE CARTAN MATRICES [J].
BERMAN, S ;
WONENBUR.M ;
MOODY, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 21 (12) :1091-&
[6]  
Berstel J., 2010, ENCY MATH APPL, V137
[7]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[8]   From triangulated categories to cluster algebras [J].
Caldero, Philippe ;
Keller, Bernhard .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :169-211
[9]   LAURENT EXPANSIONS IN CLUSTER ALGEBRAS VIA QUIVER REPRESENTATIONS [J].
Caldero, Philippe ;
Zelevinsky, Andrei .
MOSCOW MATHEMATICAL JOURNAL, 2006, 6 (03) :411-429
[10]   Cluster algebras as Hall algebras of quiver representations [J].
Caldero, Philippe ;
Chapoton, Frederic .
COMMENTARII MATHEMATICI HELVETICI, 2006, 81 (03) :595-616