Deep Learning-Based Real-Time Crack Segmentation for Pavement Images

被引:24
|
作者
Wang, Wenjun [1 ]
Su, Chao [1 ]
机构
[1] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Pavement crack segmentation; Convolutional neural network; Separable convolution; Real time; DAMAGE DETECTION; ARCHITECTURE; RECOGNITION; NETWORKS;
D O I
10.1007/s12205-021-0474-2
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Crack is the early form of most pavement defects and has a great negative effect on road service life. Timely detection and maintenance of cracks may minimize the loss caused by it. In this paper, we propose a lightweight crack segmentation model based on a bilateral segmentation network, which achieves a good balance between inference speed and segmentation performance. The model contains two parts: context path and spatial path. The network used in context path is inspired by Xception, which is used to rapidly down-sample the feature map. Spatial path employs three convolutional layers to encode sufficient spatial information. The F1_score and IoU achieved by our model on the Crack500 dataset are 0.8270 and 0.7379, respectively. The proposed model gains superior performance in FPS compared to other four models. In addition, the model is able to process images at 1,024 x 512 pixels in real-time (31.3 FPS). Through the comparison of training time, our model can save 54.04% of the time.
引用
收藏
页码:4495 / 4506
页数:12
相关论文
共 50 条
  • [31] Deep Learning-Based Real-Time Mode Decomposition for Multimode Fibers
    An, Yi
    Huang, Liangjin
    Li, Jun
    Leng, Jinyong
    Yang, Lijia
    Zhou, Pu
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (04) : 1 - 6
  • [32] Deep Learning-Based Real-time Object Detection in Inland Navigation
    Hammedi, Wided
    Ramirez-Martinez, Metzli
    Brunet, Philippe
    Senouci, Sidi Mohammed
    Messous, Mohamed Ayoub
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [33] Real-time deep learning-based market demand forecasting and monitoring
    Guo, Yuan
    Luo, Yuanwei
    He, Jingjun
    He, Yun
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [34] Deep Learning-Based Real-Time Failure Detection of Storage Devices
    Su, Chuan-Jun
    Tsai, Lien-Chung
    Huang, Shi-Feng
    Li, Yi
    ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING, 2020, 965 : 160 - 168
  • [35] A hybrid deep learning pavement crack semantic segmentation
    Al-Huda, Zaid
    Peng, Bo
    Algburi, Riyadh Nazar Ali
    Al-antari, Mugahed A.
    AL-Jarazi, Rabea
    Zhai, Donghai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
  • [36] Enhancing Surgical Guidance: Deep Learning-Based Liver Vessel Segmentation in Real-Time Ultrasound Video Frames
    Awais, Muhammad
    Al Taie, Mais
    O'Connor, Caleb S.
    Castelo, Austin H.
    Acidi, Belkacem
    Cao, Hop S. Tran
    Brock, Kristy K.
    CANCERS, 2024, 16 (21)
  • [37] Test-time augmentation for deep learning-based cell segmentation on microscopy images
    Nikita Moshkov
    Botond Mathe
    Attila Kertesz-Farkas
    Reka Hollandi
    Peter Horvath
    Scientific Reports, 10
  • [38] Test-time augmentation for deep learning-based cell segmentation on microscopy images
    Moshkov, Nikita
    Mathe, Botond
    Kertesz-Farkas, Attila
    Hollandi, Reka
    Horvath, Peter
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [39] Deep-learning-based segmentation of the vocal tract and articulators in real-time magnetic resonance images of speech
    Ruthven, Matthieu
    Miquel, Marc E.
    King, Andrew P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 198
  • [40] Deep CNN Approach with Visual Features for Real-Time Pavement Crack Detection
    Kulambayev, Bakhytzhan
    Astaubayeva, Gulnar
    Tleuberdiyeva, Gulnara
    Alimkulova, Janna
    Nussupbekova, Gulzhan
    Kisseleva, Olga
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 319 - 328