Plasmon enhanced visible light photocatalytic activity in polymer-derived TiN/Si-O-C-N nanocomposites

被引:17
作者
Awin, Eranezhuth Wasan [1 ]
Lale, Abhijeet [2 ]
Kumar, K. C. Hari [1 ]
Demirci, Umit B. [3 ]
Bernard, Samuel [2 ]
Kumar, Ravi [1 ]
机构
[1] Indian Inst Technol Madras IIT Madras, Dept Met & Mat Engn, Lab High Performance Ceram, Madras 600036, Tamil Nadu, India
[2] Univ Limoges, CNRS, UMR 7315, IRCER, F-87000 Limoges, France
[3] Univ Montpellier, CNRS, UMR 5635, IEM,ENSCM, Pl E Bataillon, F-34095 Montpellier, France
关键词
Nanocomposites; Plasmonics; Photocatalysis; Dyedegradation; TITANIUM NITRIDE; CERAMIC NANOCOMPOSITES; SILICON OXYCARBIDE; SIALCN CERAMICS; NANOPARTICLES; CONVERSION; OXIDATION; CHEMISTRY; SHAPE; TIO2;
D O I
10.1016/j.matdes.2018.06.060
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, we provide a detailed insight into the precursor chemistry, precursor-to-material transformation and characterization of nanocomposites made of a TiN nanophase and a Si-O-C-N ceramic. The polymer-derived ceramics (PDCs) route applied to synthesize these nanocomposites resulted in the formation of nanocrystals less than 4 nm in size and the calculated lattice parameter value for the nanocrystals (a = 0.4239 nm) matched the theoretical value of TiN (a = 0.4241 nm). The Si-O-C-N ceramic served as a platform for anchoring TiN nanocrystals. As a proof of concept, we have attempted to exploit the plasmonic properties of nanocomposites to achieve photocatalytic degradation of organic dyes. The absorption spectra clearly showed plasmonic resonance in the visible region with peak positioned around 670 nm according to the presence of TiN nanocrystals which resulted in the enhancement of dye degradation. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 63 条
[1]   Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion [J].
An, LN ;
Wang, YG ;
Bharadwaj, L ;
Zhang, LG ;
Fan, Y ;
Jiang, DP ;
Sohn, YH ;
Desai, VH ;
Kapat, J ;
Chow, LC .
ADVANCED ENGINEERING MATERIALS, 2004, 6 (05) :337-340
[2]   Morphology evolution of nanorods decorated on electrospun nanofibers and their applications in SERS and catalysis [J].
Bai, Lu ;
Yan, Zhaodong ;
Jia, Lu ;
Liu, Zhicheng ;
Liu, Yaqing .
MATERIALS & DESIGN, 2017, 135 :9-15
[3]   Nanocomposites through the Chemistry of Single-Source Precursors: Understanding the Role of Chemistry behind the Design of Monolith-Type Nanostructured Titanium Nitride/Silicon Nitride [J].
Bechelany, Mirna Chaker ;
Proust, Vanessa ;
Lale, Abhijeet ;
Miele, Philippe ;
Malo, Sylvie ;
Gervais, Christel ;
Bernard, Samuel .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (04) :832-845
[4]   In Situ Controlled Growth of Titanium Nitride in Amorphous Silicon Nitride: A General Route Toward Bulk Nitride Nanocomposites with Very High Hardness [J].
Bechelany, Mirna Chaker ;
Proust, Vanessa ;
Gervais, Christel ;
Ghisleni, Rudy ;
Bernard, Samuel ;
Miele, Philippe .
ADVANCED MATERIALS, 2014, 26 (38) :6548-6553
[5]   Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy [J].
Brus, Louis .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1742-1749
[6]  
Burda Clemens., 2005, Chemistry and Properties of Nanocrystals of Different Shapes
[7]   Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts [J].
Chang, Xueting ;
Li, Zhongliang ;
Zhai, Xinxin ;
Sun, Shibin ;
Gu, Danxia ;
Dong, Lihua ;
Yin, Yansheng ;
Zhu, Yanqiu .
MATERIALS & DESIGN, 2016, 98 :324-332
[8]   A Plasmonic Molybdenum Oxide Hybrid with Reversible Tunability for Visible-Light-Enhanced Catalytic Reactions [J].
Cheng, Hefeng ;
Qian, Xufang ;
Kuwahara, Yasutaka ;
Mori, Kohsuke ;
Yamashita, Hiromi .
ADVANCED MATERIALS, 2015, 27 (31) :4616-4621
[9]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/NPHOTON.2013.238, 10.1038/nphoton.2013.238]
[10]  
Colombo P., 2010, POLYM DERIVED CERAMI