Multi-innovation gradient parameter estimation for multivariable systems based on the maximum likelihood principle

被引:6
|
作者
Xia, Huafeng [1 ]
Xu, Sheng [1 ]
Zhou, Cheng [1 ]
Chen, Feiyan [2 ]
机构
[1] Taizhou Univ, Taizhou Elect Power Convers & Control Engn Techno, Taizhou 225300, Peoples R China
[2] Xian Jiaotong Liverpool Univ, Sch Sci, Suzhou, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
decomposition technique; maximum likelihood; multi-innovation identification theory; multivariable system; parameter estimation; RECURSIVE LEAST-SQUARES; ITERATIVE ESTIMATION; IDENTIFICATION ALGORITHM; COLLISION-AVOIDANCE; NONLINEAR-SYSTEMS; TRACKING CONTROL; FAULT-DIAGNOSIS; STATE; MODEL; TIME;
D O I
10.1002/oca.2766
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers the parameter estimation problems of linear multivariable systems with unknown disturbances. For the parameter matrices in the multivariable systems, the model decomposition technique is used to reduce the computational complexity by decomposing the multivariable system into several subsystems with only the parameter vectors. By means of the negative gradient search, a decomposition-based maximum likelihood recursive extended stochastic gradient algorithm is derived. In order to improve the parameter estimation accuracy, by introducing the multi-innovation identification theory, a decomposition-based maximum likelihood multi-innovation extended stochastic gradient algorithm is proposed. The simulation results illustrate the effectiveness of the proposed algorithms.
引用
收藏
页码:106 / 122
页数:17
相关论文
共 50 条
  • [21] Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle
    Xu, Ling
    Ding, Feng
    IET SIGNAL PROCESSING, 2017, 11 (02) : 228 - 237
  • [22] Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems
    Chen, Jing
    Zhang, Yan
    Ding, Ruifeng
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1428 - 1434
  • [23] Maximum likelihood gradient identification for multivariate equation-error moving average systems using the multi-innovation theory
    Liu, Lijuan
    Ding, Feng
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (07) : 1031 - 1046
  • [24] Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises
    Ding, Feng
    Liu, Peter X.
    Liu, Guangjun
    SIGNAL PROCESSING, 2009, 89 (10) : 1883 - 1890
  • [25] Multi-innovation Stochastic Gradient Parameter Estimation for Input Nonlinear Controlled Autoregressive Models
    Xiao, Yongsong
    Song, Guanglei
    Liao, Yuwu
    Ding, Ruifeng
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2012, 10 (03) : 639 - 643
  • [26] Iterative Parameter Estimation for a Class of Multivariable Systems Based on the Hierarchical Identification Principle and the Gradient Search
    Wang, Dongqing
    Ding, Rui
    Dong, Xinzhuang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2012, 31 (06) : 2167 - 2177
  • [27] Iterative Parameter Estimation for a Class of Multivariable Systems Based on the Hierarchical Identification Principle and the Gradient Search
    Dongqing Wang
    Rui Ding
    Xinzhuang Dong
    Circuits, Systems, and Signal Processing, 2012, 31 : 2167 - 2177
  • [28] Decomposition- and Gradient-Based Iterative Identification Algorithms for Multivariable Systems Using the Multi-innovation Theory
    Lijuan Wan
    Feng Ding
    Circuits, Systems, and Signal Processing, 2019, 38 : 2971 - 2991
  • [29] Decomposition- and Gradient-Based Iterative Identification Algorithms for Multivariable Systems Using the Multi-innovation Theory
    Wan, Lijuan
    Ding, Feng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (07) : 2971 - 2991
  • [30] Instrumental variable-based multi-innovation gradient estimation for nonlinear systems with scarce measurements
    Xia, Huafeng
    Xu, Sheng
    Miao, Xinghua
    Cao, Jian
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2023, 44 (01): : 243 - 258