Multi-innovation gradient parameter estimation for multivariable systems based on the maximum likelihood principle

被引:6
|
作者
Xia, Huafeng [1 ]
Xu, Sheng [1 ]
Zhou, Cheng [1 ]
Chen, Feiyan [2 ]
机构
[1] Taizhou Univ, Taizhou Elect Power Convers & Control Engn Techno, Taizhou 225300, Peoples R China
[2] Xian Jiaotong Liverpool Univ, Sch Sci, Suzhou, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
decomposition technique; maximum likelihood; multi-innovation identification theory; multivariable system; parameter estimation; RECURSIVE LEAST-SQUARES; ITERATIVE ESTIMATION; IDENTIFICATION ALGORITHM; COLLISION-AVOIDANCE; NONLINEAR-SYSTEMS; TRACKING CONTROL; FAULT-DIAGNOSIS; STATE; MODEL; TIME;
D O I
10.1002/oca.2766
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers the parameter estimation problems of linear multivariable systems with unknown disturbances. For the parameter matrices in the multivariable systems, the model decomposition technique is used to reduce the computational complexity by decomposing the multivariable system into several subsystems with only the parameter vectors. By means of the negative gradient search, a decomposition-based maximum likelihood recursive extended stochastic gradient algorithm is derived. In order to improve the parameter estimation accuracy, by introducing the multi-innovation identification theory, a decomposition-based maximum likelihood multi-innovation extended stochastic gradient algorithm is proposed. The simulation results illustrate the effectiveness of the proposed algorithms.
引用
收藏
页码:106 / 122
页数:17
相关论文
共 50 条
  • [1] Maximum Likelihood-based Multi-innovation Stochastic Gradient Method for Multivariable Systems
    Xia, Huafeng
    Ji, Yan
    Liu, Yanjun
    Xu, Ling
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (03) : 565 - 574
  • [2] Maximum Likelihood-based Multi-innovation Stochastic Gradient Method for Multivariable Systems
    Huafeng Xia
    Yan Ji
    Yanjun Liu
    Ling Xu
    International Journal of Control, Automation and Systems, 2019, 17 : 565 - 574
  • [3] Auxiliary Model-Based Maximum Likelihood Multi-Innovation Forgetting Gradient Identification for a Class of Multivariable Systems
    Wang, Huihui
    Liu, Ximei
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2025,
  • [4] Maximum Likelihood Multi-innovation Stochastic Gradient Estimation for Multivariate Equation-error Systems
    Liu, Lijuan
    Ding, Feng
    Wang, Cheng
    Alsaedi, Ahmed
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2018, 16 (05) : 2528 - 2537
  • [5] Maximum Likelihood Multi-innovation Stochastic Gradient Estimation for Multivariate Equation-error Systems
    Lijuan Liu
    Feng Ding
    Cheng Wang
    Ahmed Alsaedi
    Tasawar Hayat
    International Journal of Control, Automation and Systems, 2018, 16 : 2528 - 2537
  • [6] Multi-innovation parameter and state estimation for multivariable state space systems
    Wang, Xuehai
    Zhu, Fang
    Huang, Fenglin
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (3-4) : 274 - 279
  • [7] Gradient Parameter Estimation of a Class of Nonlinear Systems Based on the Maximum Likelihood Principle
    Zhang, Chen
    Liu, Haibo
    Ji, Yan
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (05) : 1393 - 1404
  • [8] Gradient Parameter Estimation of a Class of Nonlinear Systems Based on the Maximum Likelihood Principle
    Chen Zhang
    Haibo Liu
    Yan Ji
    International Journal of Control, Automation and Systems, 2022, 20 : 1393 - 1404
  • [9] Maximum likelihood based multi-innovation stochastic gradient estimation for controlled autoregressive ARMA systems using the data filtering technique
    Chen, Feiyan
    Ding, Feng
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5993 - 5998
  • [10] Maximum likelihood gradient-based iterative estimation for multivariable systems
    Xia, Huafeng
    Yang, Yongqing
    Ding, Feng
    Xu, Ling
    Hayat, Tasawar
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (11): : 1683 - 1691