In this paper we consider macroscopic nonlinear moment models for the approximation of kinetic chemotaxis equations on a network. Coupling conditions at the nodes of the network for these models are derived from the coupling conditions of kinetic equations. The results of the different models are compared and relations to a Keller-Segel model on networks are discussed. For a numerical approximation of the governing equations an asymptotic well-balanced schemes is extended to directed graphs. Kinetic and macroscopic equations are investigated numerically and their solutions are compared for tripod and more general networks.