Melting of 1-octadecene inside the pores of open-morphology silica gel: thermodynamic model and experimental studies

被引:11
作者
Hnatiuk, K. I. [1 ]
Dinzhos, R. V. [2 ]
Simeonov, M. S. [3 ]
Alekseev, A. N. [1 ]
Alekseev, S. A. [1 ]
Sirko, V. V. [1 ]
Zabashta, Yu. F. [1 ]
Koseva, N. S. [4 ]
Lazarenko, M. M. [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, 60 Volodymyrska St, UA-01033 Kiev, Ukraine
[2] Mykolaiv VO Sukhomlynskyi Natl Univ, 24 Nikolska St, UA-54030 Mykolaiv, Ukraine
[3] Univ Sofia, 1 James Bourchier Blvd, Sofia 1164, Bulgaria
[4] Bulgarian Acad Sci, Inst Polymers, Akad G Bonchev St,Block 103-A, BU-1113 Sofia, Bulgaria
关键词
Melting; Phase transition; Nanopores; Surface tension effects; 1-Octadecene; Silica gel; SOLID PHASE-TRANSITION; POLYAMIDE-6/ORGANOCLAY NANOCOMPOSITES; COOLING/HEATING CYCLES; ENTHALPY RELAXATION; BEHAVIOR;
D O I
10.1007/s10973-019-09133-4
中图分类号
O414.1 [热力学];
学科分类号
摘要
Melting of crystalline compounds inside the nanopores of open-morphology porous systems was studied on a model system, consisted of 1-octadecene and silica gels with different pore sizes, by means of thermogravimetry, differential scanning calorimetry and powder X-ray diffraction. The parameters of silica gels porous structure (surface area, pore size and volume) were calculated using N-2 adsorption data. To describe the experimental results, a new thermodynamic model of crystallites melting inside the nanopores of irregular shape was established. This model allows an analytical prediction for the shift of phase transition temperature and melting enthalpy (latent heat of melting) due to the surface tension effects. To a first approximation, both parameters must linearly depend on the specific ratio of the total surface of pores to their total volume, and experimental studies have mostly confirmed this result for the melting of 1-octadecene confined inside the pores of a wide range of various silicas (with the pores of different sizes and geometry).
引用
收藏
页码:1243 / 1250
页数:8
相关论文
共 32 条
  • [1] Effects of confinement on freezing and melting
    Alba-Simionesco, C.
    Coasne, B.
    Dosseh, G.
    Dudziak, G.
    Gubbins, K. E.
    Radhakrishnan, R.
    Sliwinska-Bartkowiak, M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (06) : R15 - R68
  • [2] Alekseev AN, 2018, NANOCOMPOSITES NANOS, P387
  • [3] INFLUENCE OF OPEN-POROUS SYSTEM ON THE SOLID-STATE PHASE TRANSITION IN 1-OCTADECENE
    Alekseev, O. M.
    Alekseev, S. O.
    Zabashta, Yu F.
    Lazarenko, M. M.
    Hnatiuk, K., I
    Lazarenko, M., V
    Dinzhos, R., V
    Simeonov, M. S.
    [J]. UKRAINIAN JOURNAL OF PHYSICS, 2019, 64 (04): : 340 - 347
  • [4] Alekseev OM, 2008, UKR J PHYS, V53, P882
  • [5] Nonfreezing Interfacial Layers of Cyclohexane in Nanoporous Silica
    Amanuel, S.
    Bauer, H.
    Bonventre, P.
    Lasher, D.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (44) : 18983 - 18986
  • [6] Balescu R., 1975, Equilibrium and Nonequilibrium Statistical Mechanics
  • [7] PHASE EQUILIBRIUM, THERMODYNAMIC LIMIT, AND MELTING TEMPERATURE IN NANOCRYSTALS
    Bulavin, L. A.
    Alekseev, O. M.
    Zabashta, Yu F.
    Lazarenko, M. M.
    [J]. UKRAINIAN JOURNAL OF PHYSICS, 2018, 63 (11): : 1036 - 1040
  • [8] MELTING THERMODYNAMICS OF NANOCRYSTALS
    Bulavin, L. A.
    Alekseev, O. M.
    Zabashta, Yu. F.
    Lazarenko, M. M.
    [J]. JOURNAL OF PHYSICAL STUDIES, 2018, 22 (02):
  • [9] Application of differential scanning calorimetry to study porous structure of hydrothermally modified silicas
    Charmas, B.
    Skubiszewska-Zieba, J.
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2017, 129 (01) : 23 - 32
  • [10] Enthalpy relaxation in the cooling/heating cycles of polyamide 6/organoclay nanocomposites. I. Nonisothermal crystallization
    Dinzhos, RV
    Privalko, EG
    Privalko, VP
    [J]. JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS, 2005, B44 (04): : 421 - 430