Semi-invariant Submanifolds in Metric Geometry of Endomorphisms

被引:2
作者
Crasmareanu, Mircea [1 ]
Bercu, Gabriel [2 ]
机构
[1] Univ Alexandru Ioan Cuza, Fac Math, Iasi 700506, Romania
[2] Univ Dunarea Jos, Dept Math, Galati 800008, Romania
关键词
(g; F; mu)-manifold: semi-invariant submanifold; (Integrable) distribution; CR-SUBMANIFOLDS;
D O I
10.1007/s40010-018-0554-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Attempts have been made to introduce generalization of structured manifolds as the most general Riemannian metric g associated with an endomorphism F and initiate a study of their semi-invariant submanifolds. These submanifolds are generalizations of CR submanifolds of almost complex geometry and semi-invariant submanifolds of several interesting geometries (almost product, almost contact and others). Characterization of the integrability of both invariant and anti-invariant distribution are done; the special case when F is covariant constant with respect to g.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 14 条
[1]  
Bejan CL., 1990, DEMONSTR MATH, V23, P335
[2]   CR-SUBMANIFOLDS OF A KAEHLER MANIFOLD .1. [J].
BEJANCU, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 69 (01) :135-142
[3]  
Bejancu A., 1986, Geometry of CR-Submanifolds
[4]  
Bejancu A., 1981, Analele stiintifice ale Universitaii Al.I. Cuza din Iasi, V27, P163
[5]  
Bejancu A, 1984, U TIMISOARA SER STUN, V22, P3
[6]   ON CR-SUBMANIFOLDS OF HERMITIAN-MANIFOLDS [J].
BLAIR, DE ;
CHEN, BY .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) :353-363
[7]  
Calin C, 2012, TAIWAN J MATH, V16, P2053
[8]  
Chen BY, 2000, HANDBOOK OF DIFFERENTIAL GEOMETRY, VOL I, P187, DOI 10.1016/S1874-5741(00)80006-0
[9]  
CHEN BY, 1981, GEOMETRY SUBMANIFOLD
[10]  
Janus S, 1982, TENSOR, V39, P195