Periodic and Chaotic Orbits of a Discrete Rational System

被引:0
|
作者
Lazaryan, N. [1 ]
Sedaghat, H. [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
关键词
SNAP-BACK REPELLERS; DIFFERENCE-EQUATIONS; PLANE MAPS; POPULATION-MODEL; QUADRATIC TERMS; GLOBAL DYNAMICS; FOCAL POINTS; DENOMINATOR; BEHAVIOR;
D O I
10.1155/2015/519598
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a rational planar system consisting of one linear-affine and one linear-fractional difference equation. If all of the system's parameters are positive (so that the positive quadrant is invariant and the system is continuous), then we show that the unique fixed point of the system in the positive quadrant cannot be repelling and the system does not have a snap-back repeller. By folding the system into a second-order equation, we find special cases of the system with some negative parameter values that do exhibit chaos in the sense of Li and Yorke within the positive quadrant of the plane.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On the stabilization of periodic orbits for discrete time chaotic systems
    Morgül, Ö
    PHYSICS LETTERS A, 2005, 335 (2-3) : 127 - 138
  • [2] Stabilization of unstable periodic orbits for a chaotic system
    Yang, GK
    Wei, SZ
    Wei, JH
    Zeng, JC
    Wu, ZM
    Sun, GJ
    SYSTEMS & CONTROL LETTERS, 1999, 38 (01) : 21 - 26
  • [3] Stabilization of unstable periodic orbits for a chaotic system
    Genke, Yang
    Shuzhi, Wei
    Junhu, Wei
    Jianchao, Zeng
    Zhiming, Wu
    Guoji, Sun
    Systems and Control Letters, 1999, 38 (01): : 21 - 26
  • [4] ON THE PERIODIC-ORBITS OF A STRONGLY CHAOTIC SYSTEM
    AURICH, R
    STEINER, F
    PHYSICA D, 1988, 32 (03): : 451 - 460
  • [5] Stabilising periodic orbits in a chaotic system with hysteresis
    Mc Namara, H.
    INTERNATIONAL WORKSHOP ON MULTI-RATE PROCESSES AND HYSTERESIS, 2008, 138
  • [6] Stabilization of unstable periodic orbits for discrete time chaotic systems by using periodic feedback
    Morgül, Ö
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (02): : 311 - 323
  • [7] Stabilizing higher periodic orbits of chaotic discrete-time maps
    Lenz, H
    Obradovic, D
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (01): : 251 - 266
  • [8] On the special role of symmetric periodic orbits in a chaotic system
    Benet, L
    Jung, C
    Papenbrock, T
    Seligman, TH
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 131 (1-4) : 254 - 264
  • [9] On the special role of symmetric periodic orbits in a chaotic system
    Benet, L.
    Jung, C.
    Papenbrock, T.
    Seligman, T.H.
    Physica D: Nonlinear Phenomena, 131 (01): : 254 - 264
  • [10] On the stabilization of periodic orbits for discrete time chaotic systems by using scalar feedback
    Morgul, Oemer
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (12): : 4431 - 4442