Bezier variant of modified α-Bernstein operators

被引:4
|
作者
Agrawal, P. N. [1 ]
Bhardwaj, Neha [2 ]
Bawa, Parveen [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Amity Univ Uttar Pradesh, Amity Inst Appl Sci, Dept Math, Noida 201303, India
关键词
Bezier operators; Modified alpha-Bernstein operators; Modulus of continuity; Ditizian-Totik modulus of smoothness; Rate of convergence; Bounded variation; Voronovskaja theorerm; APPROXIMATION; CONVERGENCE;
D O I
10.1007/s12215-021-00613-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce the Bezier variant of modified alpha-Bernstein operators and study the degree of approximation using second order modulus of continuity. We also establish a direct approximation theorem with the aid of Ditzian-Totik modulus of smoothness and the Peetre's K-functional. Further, we obtain a quantitative Voronovskaja type theorem and the rate of convergence for functions with a derivative of bounded variation on [0, 1]. Finally, we depict the rate of convergence of these operators for certain functions by graphical illustration using Matlab software.
引用
收藏
页码:807 / 827
页数:21
相关论文
共 50 条
  • [41] Stancu-Type Generalized q-Bernstein-Kantorovich Operators Involving Bezier Bases
    Cheng, Wen-Tao
    Nasiruzzaman, Md
    Mohiuddine, Syed Abdul
    MATHEMATICS, 2022, 10 (12)
  • [42] τ-Bzier-Bernstein-Integral Type Operators
    Kajla, Arun
    Mohiuddine, S. A.
    Berwal, Sahil
    Alotaibi, Abdullah
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [43] Parametric Generalization of the Modified Bernstein Operators
    Sofyalioglu, Melek
    Kanat, Kadir
    Cekim, Bayram
    FILOMAT, 2022, 36 (05) : 1699 - 1709
  • [44] Genuine modified Bernstein–Durrmeyer operators
    Syed Abdul Mohiuddine
    Tuncer Acar
    Mohammed A. Alghamdi
    Journal of Inequalities and Applications, 2018
  • [45] Approximation by the Bezier variant of the MKZ-Kantorovich operators in the case α < 1
    Zeng, Xiao-Ming
    Gupta, Vijay
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (03): : 550 - 557
  • [46] ψ-Bernstein-Kantorovich operators
    Aktuglu, Huseyin
    Kara, Mustafa
    Baytunc, Erdem
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 1124 - 1141
  • [47] Generalized Bezier Curves Based on Bernstein-Stancu-Chlodowsky Type Operators
    Khatri, Kejal
    Mishra, Vishnu Narayan
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [48] Two families of Bernstein-Durrmeyer type operators
    Cardenas-Morales, Daniel
    Gupta, Vijay
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 342 - 353
  • [49] Local approximation by a variant of Bernstein-Durrmeyer operators
    Abel, Ulrich
    Gupta, Vijay
    Mohapatra, Ram N.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) : 3372 - 3381
  • [50] On approximation properties of some non-positive Bernstein-Durrmeyer type operators modified in the Bezier-King sense
    Vasian, Bianca Ioana
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 (03): : 104 - 117