Experimental and DFT research on role of sodium in NO reduction on char surface under H2O/Ar atmosphere

被引:23
|
作者
Chen, Yi-Feng [1 ]
Su, Sheng [1 ]
Zhang, Chun-Xiu [1 ]
Wang, Zhong-Hui [1 ]
Xie, Yu-Xian [1 ]
Zhang, Hao [1 ]
Qing, Meng-Xia [3 ]
Wang, Yi [1 ]
Hu, Song [1 ]
Zhang, Zhong-Xiao [2 ]
Xiang, Jun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Inst Thermal Energy Engn, Shanghai 200240, Peoples R China
[3] Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
VICTORIAN BROWN-COAL; OXY-FUEL COMBUSTION; STEAM GASIFICATION; NITRIC-OXIDE; CARBON; ALKALI; MECHANISM; PYROLYSIS; KINETICS; NITROGEN;
D O I
10.1016/j.fuel.2021.121105
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The catalytic mechanism of Na during NO reduction on char surface is proposed to provide fundamental information for minimizing NOx emissions. A molecular modeling study was carried out using density functional theory to clarify the NO reduction and CO release pathways on char surface. The calculation results explain the promotion phenomenon caused by Na catalysis, and the fluctuation of the CO release curve in the experiment. Under H2O/Ar atmosphere, besides the NO-char heterogeneous reaction, simultaneous occurrence of the NO homogeneous reaction with lower energy barrier improved the NO reduction rate. According to the simulation results, the catalytic effect of Na is manifested in that it can weaken the conjugated components of the aromatics structure, and form a stable H-C-O-Na structure to weaken the connected C-C bond, thereby facilitating the CO release. Mayer bond order and RDG analyses indicate that the participation of Na can prevent the C-O bond from being stretched, and generate the strong attractive interaction to promote the NO reduction.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Experimental study on the structure and reactivity of char in pressurized O2/H2O atmosphere
    Bai, Chenxi
    Zhang, Yu
    Zhang, Wenda
    Chen, Kun
    Deng, Lihua
    Zhao, Yijun
    Sun, Shaozeng
    Feng, Dongdong
    Wu, Jiangquan
    FUEL PROCESSING TECHNOLOGY, 2022, 237
  • [2] Experimental study on char nitrogen conversion characteristics during char combustion process in pressurized O2/CO2/H2O atmosphere
    Bai, Chenxi
    Li, Yukai
    Chen, Kun
    Zhang, Wenda
    Xu, Sicong
    Zhao, Yijun
    Sun, Shaozeng
    Feng, Dongdong
    ENERGY, 2024, 313
  • [3] Experimental and DFT Research on the Effects of O2/CO2 and O2/H2O Pretreatments on the Combustion Characteristics of Char
    Zhang, Lei
    Xu, Jie
    Sun, Rui
    Wang, Zhuozhi
    Wang, Xingyi
    Yuan, Mengfan
    Wu, Jiangquan
    MOLECULES, 2023, 28 (04):
  • [4] Kinetics of rice husk char gasification in an H2O or a CO2 atmosphere
    Hong Nam Nguyen
    Van De Steene, Laurent
    Duc Dung Le
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2018, 40 (14) : 1701 - 1713
  • [5] Theoretical research of the NO and N2O reduction by char in oxy-fuel CFBC: Influence of H2O
    Feng, Kaixuan
    Lin, Ruixiang
    Hu, Yuyan
    Feng, Yuheng
    Chen, Dezhen
    Cao, Tongcheng
    Wang, Qiulin
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2025, 1244
  • [6] A study of char gasification in H2O and CO2 mixtures: Role of inherent minerals in the coal
    Wang, Yu-Long
    Zhu, Sheng-Hua
    Gao, Mei-Qi
    Yang, Zhi-Rong
    Yan, Lun-Jing
    Bai, Yong-Hui
    Li, Fan
    FUEL PROCESSING TECHNOLOGY, 2016, 141 : 9 - 15
  • [7] Experimental study on the reaction kinetics of char combustion in a pressurized O2/H2O atmosphere
    Bai, Chenxi
    Chen, Kun
    Zhang, Wenda
    Li, Yukai
    Li, Bowen
    Zhao, Yijun
    Sun, Shaozeng
    Feng, Dongdong
    FUEL PROCESSING TECHNOLOGY, 2023, 252
  • [8] Experimental and Modeling Study of Char Gasification with Mixtures of CO2 and H2O
    Chen, Chao
    Zhang, Sen
    Xu, Kai
    Luo, Guangqian
    Yao, Hong
    ENERGY & FUELS, 2016, 30 (03) : 1628 - 1635
  • [9] Experimental study on effects of combustion atmosphere and coal char on NO2 reduction under oxy-fuel condition
    Wang, Chang'an
    Wang, Pengqian
    Du, Yongbo
    Che, Defu
    JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (04) : 1023 - 1033
  • [10] Study on Pyrolysis Characteristics of Phosphate Tailings under H2O Atmosphere
    Yang, Yanping
    Zhang, Yu
    Nie, Dengpan
    Sun, Chenxin
    Cao, Jianxin
    MATERIALS, 2024, 17 (09)