The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis

被引:126
|
作者
Chen, Han-Jou [1 ]
Mitchell, Jacqueline C. [1 ]
Novoselov, Sergey [2 ]
Miller, Jack [1 ]
Nishimura, Agnes L. [1 ]
Scotter, Emma L. [3 ]
Vance, Caroline A. [1 ]
Cheetham, Michael E. [2 ]
Shaw, Christopher E. [1 ]
机构
[1] Kings Coll London, Maurice Wohl Clin Neurosci Inst, Inst Psychiat Psychol & Neurosci, 125 Coldharbour Lane, London SE5 9NU, England
[2] UCL Inst Ophthalmol, 11-43 Bath St, London, England
[3] Univ Auckland, Dept Pharmacol, Auckland 1, New Zealand
基金
英国惠康基金; 英国医学研究理事会;
关键词
TDP-43; proteinopathy; ALS; heat shock response; HSF1; molecular chaperone; FRONTOTEMPORAL LOBAR DEGENERATION; PATHOLOGICAL TDP-43; MOLECULAR CHAPERONES; NEURONAL INCLUSIONS; PROTEIN AGGREGATION; DISEASE PROGRESSION; HUNTINGTONS-DISEASE; AUTOPHAGIC REMOVAL; MOTOR; BINDING;
D O I
10.1093/brain/aww028
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Insoluble TDP-43 inclusions are the pathological hallmark of ALS and tau-negative frontotemporal lobar degeneration. Chen et al. show that the heat shock response (HSR), which regulates chaperone expression, is compromised in an ALS mouse model and in patients. Activation of the HSR clears insoluble TDP-43 and increases cell survival.Insoluble TDP-43 inclusions are the pathological hallmark of ALS and tau-negative frontotemporal lobar degeneration. Chen et al. show that the heat shock response (HSR), which regulates chaperone expression, is compromised in an ALS mouse model and in patients. Activation of the HSR clears insoluble TDP-43 and increases cell survival.Detergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in similar to 95% of amyotrophic lateral sclerosis and similar to 60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation. Here we show that manipulation of the heat shock response by expression of dominant active HSF1 results in a dramatic reduction of insoluble and hyperphosphorylated TDP-43 that enhances cell survival, whereas expression of dominant negative HSF1 leads to enhanced TDP-43 aggregation and hyperphosphorylation. To determine which chaperones were mediating TDP-43 clearance we over-expressed a range of heat shock proteins (HSPs) and identified DNAJB2a (encoded by DNAJB2, and also known as HSJ1a) as a potent anti-aggregation chaperone for TDP-43. DNAJB2a has a J domain, allowing it to interact with HSP70, and ubiquitin interacting motifs, which enable it to engage the degradation of its client proteins. Using functionally deleted DNAJB2a constructs we demonstrated that TDP-43 clearance was J domain-dependent and was not affected by ubiquitin interacting motif deletion or proteasome inhibition. This indicates that TDP-43 is maintained in a soluble state by DNAJB2a, leaving the total levels of TDP-43 unchanged. Additionally, we have demonstrated that the levels of HSF1 and heat shock proteins are significantly reduced in affected neuronal tissues from a TDP-43 transgenic mouse model of amyotrophic lateral sclerosis and patients with sporadic amyotrophic lateral sclerosis. This implies that the HSF1-mediated DNAJB2a/HSP70 heat shock response pathway is compromised in amyotrophic lateral sclerosis. Defective refolding of TDP-43 is predicted to aggravate the TDP-43 proteinopathy. The finding that the pathological accumulation of insoluble TDP-43 can be reduced by the activation of HSF1/HSP pathways presents an exciting opportunity for the development of novel therapeutics.
引用
收藏
页码:1417 / 1432
页数:16
相关论文
共 50 条
  • [1] The role of TDP-43 mislocalization in amyotrophic lateral sclerosis
    Suk, Terry R.
    Rousseaux, Maxime W. C.
    MOLECULAR NEURODEGENERATION, 2020, 15 (01)
  • [2] "STRESSED OUT": The role of FUS and TDP-43 in amyotrophic lateral sclerosis
    Aksoy, Yagiz Alp
    Deng, Wei
    Stoddart, Jack
    Chung, Roger
    Guillemin, Gilles
    Cole, Nicholas James
    Neely, Graham Gregory
    Hesselson, Daniel
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2020, 126
  • [3] The role of TDP-43 protein in amyotrophic lateral sclerosis
    Wlodarczyk, Piotr
    Witczak, Mikolaj
    Gajewska, Agnieszka
    Chady, Tomasz
    Piotrowski, Igor
    JOURNAL OF MEDICAL SCIENCE, 2022, 91 (03): : 297 - 309
  • [4] The role of TDP-43 protein in amyotrophic lateral sclerosis
    Wlodarczyk, Piotr
    Witczak, Mikolaj
    Gajewska, Agnieszka
    Chady, Tomasz
    Piotrowski, Igor
    JOURNAL OF MEDICAL SCIENCE, 2024, 91 (04): : 296 - 308
  • [5] The role of TDP-43 mislocalization in amyotrophic lateral sclerosis
    Terry R. Suk
    Maxime W. C. Rousseaux
    Molecular Neurodegeneration, 15
  • [6] Why TDP-43? Why Not? Mechanisms of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis
    Floare, Mara-Luciana
    Allen, Scott P.
    NEUROSCIENCE INSIGHTS, 2020, 15
  • [7] Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis
    Brettschneider, Johannes
    Libon, David J.
    Toledo, Jon B.
    Xie, Sharon X.
    McCluskey, Leo
    Elman, Lauren
    Geser, Felix
    Lee, Virginia M. -Y.
    Grossman, Murray
    Trojanowski, John Q.
    ACTA NEUROPATHOLOGICA, 2012, 123 (03) : 395 - 407
  • [8] TDP-43 in amyotrophic lateral sclerosis - is it a prion disease?
    Ludolph, A. C.
    Brettschneider, J.
    EUROPEAN JOURNAL OF NEUROLOGY, 2015, 22 (05) : 753 - 761
  • [9] Neuropathology and neuroanatomy of TDP-43 amyotrophic lateral sclerosis
    Del Tredici, Kelly
    Braak, Heiko
    CURRENT OPINION IN NEUROLOGY, 2022, 35 (05) : 660 - 671
  • [10] Olfactory dysfunction related to TDP-43 pathology in amyotrophic lateral sclerosis
    Takeda, Takahiro
    Uchihara, Toshiki
    Kawamura, Shunji
    Ohashi, Takashi
    CLINICAL NEUROPATHOLOGY, 2014, 33 (01) : 65 - 67