共 23 条
Maximal Lattice-Free Convex Sets in Linear Subspaces
被引:60
|作者:
Basu, Amitabh
[1
]
Conforti, Michele
[2
]
Cornuejols, Gerard
[1
]
Zambelli, Giacomo
[2
]
机构:
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[2] Univ Padua, Dept Pure & Appl Math, I-35121 Padua, Italy
基金:
美国安德鲁·梅隆基金会;
关键词:
geometry of numbers;
integer programming;
maximal lattice-free convex sets;
minimal valid inequalities;
SIMPLEX TABLEAU;
CUTTING PLANES;
INTEGER;
INEQUALITIES;
VARIABLES;
ROWS;
CUTS;
D O I:
10.1287/moor.1100.0461
中图分类号:
C93 [管理学];
O22 [运筹学];
学科分类号:
070105 ;
12 ;
1201 ;
1202 ;
120202 ;
摘要:
We consider a model that arises in integer programming and show that all irredundant inequalities are obtained from maximal lattice-free convex sets in an affine subspace. We also show that these sets are polyhedra. The latter result extends a theorem of Lovasz characterizing maximal lattice-free convex sets in R-n.
引用
收藏
页码:704 / 720
页数:17
相关论文