Maximal Lattice-Free Convex Sets in Linear Subspaces

被引:60
|
作者
Basu, Amitabh [1 ]
Conforti, Michele [2 ]
Cornuejols, Gerard [1 ]
Zambelli, Giacomo [2 ]
机构
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[2] Univ Padua, Dept Pure & Appl Math, I-35121 Padua, Italy
基金
美国安德鲁·梅隆基金会;
关键词
geometry of numbers; integer programming; maximal lattice-free convex sets; minimal valid inequalities; SIMPLEX TABLEAU; CUTTING PLANES; INTEGER; INEQUALITIES; VARIABLES; ROWS; CUTS;
D O I
10.1287/moor.1100.0461
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a model that arises in integer programming and show that all irredundant inequalities are obtained from maximal lattice-free convex sets in an affine subspace. We also show that these sets are polyhedra. The latter result extends a theorem of Lovasz characterizing maximal lattice-free convex sets in R-n.
引用
收藏
页码:704 / 720
页数:17
相关论文
共 23 条
  • [1] ON MAXIMAL S-FREE CONVEX SETS
    Moran R, Diego A.
    Dey, Santanu S.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (01) : 379 - 393
  • [2] Maximal Lattice-Free Polyhedra: Finiteness and an Explicit Description in Dimension Three
    Averkov, Gennadiy
    Wagner, Christian
    Weismantel, Robert
    MATHEMATICS OF OPERATIONS RESEARCH, 2011, 36 (04) : 721 - 742
  • [3] Relaxations of mixed integer sets from lattice-free polyhedra
    Del Pia, Alberto
    Weismantel, Robert
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (03): : 221 - 244
  • [4] Lifting properties of maximal lattice-free polyhedra
    Averkov, Gennadiy
    Basu, Amitabh
    MATHEMATICAL PROGRAMMING, 2015, 154 (1-2) : 81 - 111
  • [5] Relaxations of mixed integer sets from lattice-free polyhedra
    Del Pia, Alberto
    Weismantel, Robert
    ANNALS OF OPERATIONS RESEARCH, 2016, 240 (01) : 95 - 117
  • [6] Relaxations of mixed integer sets from lattice-free polyhedra
    Alberto Del Pia
    Robert Weismantel
    4OR, 2012, 10 : 221 - 244
  • [7] Relaxations of mixed integer sets from lattice-free polyhedra
    Alberto Del Pia
    Robert Weismantel
    Annals of Operations Research, 2016, 240 : 95 - 117
  • [8] Constructing Lattice-Free Gradient Polyhedra in Dimension Two
    Paat, Joseph
    Schloter, Miriam
    Speakman, Emily
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020, 2020, 12125 : 364 - 377
  • [9] Lattice-free sets, multi-branch split disjunctions, and mixed-integer programming
    Dash, Sanjeeb
    Dobbs, Neil B.
    Guenluek, Oktay
    Nowicki, Tomasz J.
    Swirszcz, Grzegorz M.
    MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) : 483 - 508
  • [10] Lattice-Free Simplices with Lattice Width 2d - o(d)
    Mayrhofer, Lukas
    Schade, Jamico
    Weltge, Stefan
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2022, 2022, 13265 : 375 - 386