Automatically Terminated Particle Swarm Optimization with Principal Component Analysis

被引:4
作者
Ong, Bun Theang [1 ]
Fukushima, Masao [2 ]
机构
[1] Natl Inst Informat & Commun Technol, Universal Commun Res Inst, Informat Serv Platform Lab, Seika, Kyoto 6190289, Japan
[2] Nanzan Univ, Fac Sci & Engn, Dept Syst & Math Sci, Nagoya, Aichi 4668673, Japan
关键词
Global optimization; particle swarm optimization; termination criteria; gene matrix; principal component analysis; DIFFERENTIAL EVOLUTION; GLOBAL OPTIMIZATION; FEATURE-SELECTION; ALGORITHM; CONVERGENCE; STABILITY; PSO;
D O I
10.1142/S0219622014500837
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A hybrid Particle Swarm Optimization (PSO) that features an automatic termination and better search efficiency than classical PSO is presented. The proposed method is combined with the so-called "Gene Matrix" to provide the search with a self-check in order to determine a proper termination instant. Its convergence speed and reliability are also increased by the implementation of the Principal Component Analysis (PCA) technique and the hybridization with a local search method. The proposed algorithm is denominated as "Automatically Terminated Particle Swarm Optimization with Principal Component Analysis" (AT-PSO-PCA). The computational experiments demonstrate the effectiveness of the automatic termination criteria and show that AT-PSO-PCA enhances the convergence speed, accuracy and reliability of the PSO paradigm. Furthermore, comparisons with state-of-the-art evolutionary algorithms (EA) yield competitive results even under the automatically detected termination instant.
引用
收藏
页码:171 / 194
页数:24
相关论文
共 65 条
  • [51] Decision support tool for retail shelf space optimization
    Ramaseshan, B.
    Achuthan, N. R.
    Collinson, R.
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2008, 7 (03) : 547 - 565
  • [52] Reynolds RG, 2003, IEEE C EVOL COMPUTAT, P1972
  • [53] Richards M, 2003, PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, P1557
  • [54] A modified particle swarm optimizer
    Shi, YH
    Eberhart, R
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, : 69 - 73
  • [55] Shi YH, 2001, IEEE C EVOL COMPUTAT, P101, DOI 10.1109/CEC.2001.934377
  • [56] Tang EK, 2005, Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, P9
  • [57] The particle swarm optimization algorithm: convergence analysis and parameter selection
    Trelea, IC
    [J]. INFORMATION PROCESSING LETTERS, 2003, 85 (06) : 317 - 325
  • [58] A study of particle swarm optimization particle trajectories
    van den Bergh, F
    Engelbrecht, AP
    [J]. INFORMATION SCIENCES, 2006, 176 (08) : 937 - 971
  • [59] A cooperative approach to particle swarm optimization
    van den Bergh, F
    Engelbrecht, AP
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) : 225 - 239
  • [60] Wen Zhang, 2003, 6th International Conference on Advances in Power System Control, Operation and Management. Proceedings. APSCOM 2003, P302