Automatically Terminated Particle Swarm Optimization with Principal Component Analysis

被引:4
作者
Ong, Bun Theang [1 ]
Fukushima, Masao [2 ]
机构
[1] Natl Inst Informat & Commun Technol, Universal Commun Res Inst, Informat Serv Platform Lab, Seika, Kyoto 6190289, Japan
[2] Nanzan Univ, Fac Sci & Engn, Dept Syst & Math Sci, Nagoya, Aichi 4668673, Japan
关键词
Global optimization; particle swarm optimization; termination criteria; gene matrix; principal component analysis; DIFFERENTIAL EVOLUTION; GLOBAL OPTIMIZATION; FEATURE-SELECTION; ALGORITHM; CONVERGENCE; STABILITY; PSO;
D O I
10.1142/S0219622014500837
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A hybrid Particle Swarm Optimization (PSO) that features an automatic termination and better search efficiency than classical PSO is presented. The proposed method is combined with the so-called "Gene Matrix" to provide the search with a self-check in order to determine a proper termination instant. Its convergence speed and reliability are also increased by the implementation of the Principal Component Analysis (PCA) technique and the hybridization with a local search method. The proposed algorithm is denominated as "Automatically Terminated Particle Swarm Optimization with Principal Component Analysis" (AT-PSO-PCA). The computational experiments demonstrate the effectiveness of the automatic termination criteria and show that AT-PSO-PCA enhances the convergence speed, accuracy and reliability of the PSO paradigm. Furthermore, comparisons with state-of-the-art evolutionary algorithms (EA) yield competitive results even under the automatically detected termination instant.
引用
收藏
页码:171 / 194
页数:24
相关论文
共 65 条
  • [11] Clerc M., 1999, P 1999 C EV COMP CE, P1951
  • [12] Eberhart R., P 6 INT S MICROMACHI, P39, DOI DOI 10.1109/MHS.1995.494215
  • [13] Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P81, DOI 10.1109/CEC.2001.934374
  • [14] Load flow solution using hybrid particle swarm optimization
    El-Dib, AA
    Youssef, HKM
    El-Metwally, MM
    Osman, Z
    [J]. ICEEC'04: 2004 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING, PROCEEDINGS, 2004, : 742 - 746
  • [15] Esquivel SC, 2003, IEEE C EVOL COMPUTAT, P1130
  • [16] Particle swarm optimization approaches to coevolve strategies for the iterated prisoner's dilemma
    Franken, N
    Engelbrecht, AP
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2005, 9 (06) : 562 - 579
  • [17] Global and local real-coded genetic algorithms based on parent-centric crossover operators
    Garcia-Martinez, C.
    Lozano, M.
    Herrera, F.
    Molina, D.
    Sanchez, A. M.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 185 (03) : 1088 - 1113
  • [18] Giggs M. S., 2006, P 2006 IEEE C EV COM, P2580
  • [19] Hansen N, 2006, STUD FUZZ SOFT COMP, V192, P75
  • [20] Hedar A.-R., 2007, TECHNICAL REPORT