Dynamical aspects in the quantizer-dequantizer formalism

被引:22
作者
Ciaglia, F. M. [1 ,2 ]
Di Cosmo, F. [1 ,2 ]
Ibort, A. [3 ,4 ]
Marmo, G. [1 ,2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[2] INFN, Sez Napoli, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[3] Univ Carlos III Madrid, Dept Matemat, Avda Univ 30, Madrid 28911, Spain
[4] UAM, CSIC UAM UC3M UCM, Inst Ciencias Matemat, ICMAT, Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
关键词
Quantum mechanics; Quantum-to-classical transition; Dynamical reduction; QUANTUM-MECHANICS; INTEGRABILITY;
D O I
10.1016/j.aop.2017.08.025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The use of the quantizer-dequantizer formalism to describe the evolution of a quantum system is reconsidered. We show that it is possible to embed a manifold in the space of quantum states of a given auxiliary system by means of an appropriate quantizer-dequantizer system. If this manifold of states is invariant with respect to some unitary evolution, the quantizer-dequantizer system provides a classical-like realization of such dynamics, which in general is non linear. Integrability properties are also discussed. Weyl systems and generalized coherent states are used as a simple illustration of these ideas. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:769 / 781
页数:13
相关论文
共 22 条
[1]  
ABRAHAM R., 1978, Foundations of Mechanics
[2]  
Ali T.S., 1999, COHERENT STATES WAVE
[3]  
[Anonymous], 2012, The principles of quantum mechanics
[4]  
[Anonymous], 2004, From Classical to Quantum Mechanics
[5]  
[Anonymous], 2016, INFORM GEOMETRY ITS
[6]  
Ashtekar A., 1999, On Einstein's Path: Essays in Honor of Engelbert Schucking, P23
[7]  
Cariena J.F., 2016, Geometry of Jets and Fields, VVolume 110, P41
[8]   Geometrization of quantum mechanics [J].
Carinena, J. F. ;
Clemente-Gallardo, J. ;
Marmo, G. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (01) :894-903
[9]  
Carinena J. F., 2015, Geometry from Dynamics: Classical and Quantum
[10]   Geometric Hamilton-Jacobi theory [J].
Carinena, Jose F. ;
Gracia, Xavier ;
Marmo, Giuseppe ;
Martinez, Eduardo ;
Munoz-Lecanda, Miguel C. ;
Roman-Roy, Narciso .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) :1417-1458