Collagen IVα345 dysfunction in glomerular basement membrane diseases. II. Crystal structure of the α345 hexamer

被引:11
作者
Boudko, Sergei P. [1 ,2 ,3 ]
Bauer, Ryan [1 ,2 ]
Chetyrkin, Sergei, V [1 ,2 ]
Ivanov, Sergey [1 ,2 ]
Smith, Jarrod [3 ]
Voziyan, Paul A. [1 ,2 ]
Hudson, Billy G. [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Med, Div Nephrol & Hypertens, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Med Ctr, Ctr Matrix Biol, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Dept Biochem, Ctr Struct Biol, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Med Ctr, Aspirnaut, Nashville, TN USA
[5] Vanderbilt Univ, Med Ctr, Dept Pathol Microbiol & Immunol, Nashville, TN USA
[6] Vanderbilt Univ, Dept Cell & Dev Biol, 221 Kirkland Hall, Nashville, TN 37235 USA
[7] Vanderbilt Univ, Inst Chem Biol, 221 Kirkland Hall, Nashville, TN 37235 USA
[8] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, 221 Kirkland Hall, Nashville, TN 37235 USA
关键词
GOODPASTURE AUTOANTIGEN; IV COLLAGEN; STABILIZATION; ORGANIZATION; NETWORK; DOMAINS; ANTIGEN; CHAIN; AMBER;
D O I
10.1016/j.jbc.2021.100591
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Our recent work identified a genetic variant of the alpha 345 hexamer of the collagen IV scaffold that is present in patients with glomerular basement membrane diseases, Goodpasture's disease (GP) and Alport syndrome (AS), and phenocopies of AS in knock-in mice. To understand the context of this "Zurich" variant, an 8-amino acid appendage, we developed a construct of the WT alpha 345 hexamer using the single-chain NC1 trimer technology, which allowed us to solve a crystal structure of this key connection module. The alpha 345 hexamer structure revealed a ring of 12 chloride ions at the trimer-trimer interface, analogous to the collagen alpha 121 hexamer, and the location of the 170 AS variants. The hexamer surface is marked by multiple pores and crevices that are potentially accessible to small molecules. Loop-crevice-loop features constitute bioactive sites, where pathogenic pathways converge that are linked to AS and GP, and, potentially, diabetic nephropathy. In Pedchenko et al., we demonstrate that these sites exhibit conformational plasticity, a dynamic property underlying assembly of bioactive sites and hexamer dysfunction. The alpha 345 hexamer structure is a platform to decipher how variants cause AS and how hypoepitopes can be triggered, causing GP. Furthermore, the bioactive sites, along with the pores and crevices on the hexamer surface, are prospective targets for therapeutic interventions.
引用
收藏
页数:12
相关论文
共 36 条
  • [1] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [2] iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
    Battye, T. Geoff G.
    Kontogiannis, Luke
    Johnson, Owen
    Powell, Harold R.
    Leslie, Andrew G. W.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2011, 67 : 271 - 281
  • [3] Quaternary organization of the goodpasture autoantigen, the α3(IV) collagen chain -: Sequestration of two cryptic autoepitopes by intraprotomer interactions with the α4 and α5 NC1 domains
    Borza, DB
    Bondar, O
    Todd, P
    Sundaramoorthy, M
    Sado, Y
    Ninomiya, Y
    Hudson, BG
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (42) : 40075 - 40083
  • [4] Basement membrane collagen IV: Isolation of functional domains
    Boudko, Sergei P.
    Danylevych, Neonila
    Hudson, Billy G.
    Pedchenko, Vadim K.
    [J]. METHODS IN EXTRACELLULAR MATRIX BIOLOGY, 2018, 143 : 171 - 185
  • [5] Conformational diversity of the Goodpasture antigen, the noncollagenous-1 domain of the α3 chain of collagen IV
    Calvete, Juan J.
    Revert, Fernando
    Blanco, Mario
    Cervera, Javier
    Tarrega, Celine
    Sanz, Libia
    Revert-Ros, Francisco
    Granero, Froilan
    Perez-Paya, Enrique
    Hudson, Billy G.
    Saus, Juan
    [J]. PROTEOMICS, 2006, 6 : S237 - S244
  • [6] The Amber biomolecular simulation programs
    Case, DA
    Cheatham, TE
    Darden, T
    Gohlke, H
    Luo, R
    Merz, KM
    Onufriev, A
    Simmerling, C
    Wang, B
    Woods, RJ
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) : 1668 - 1688
  • [7] Structures of collagen IV globular domains: insight into associated pathologies, folding and network assembly
    Casino, Patricia
    Gozalbo-Rovira, Roberto
    Rodriguez-Diaz, Jesus
    Banerjee, Sreedatta
    Boutaud, Ariel
    Rubio, Vicente
    Hudson, Billy G.
    Saus, Juan
    Cervera, Javier
    Marina, Alberto
    [J]. IUCRJ, 2018, 5 : 765 - 779
  • [8] MolProbity: all-atom structure validation for macromolecular crystallography
    Chen, Vincent B.
    Arendall, W. Bryan, III
    Headd, Jeffrey J.
    Keedy, Daniel A.
    Immormino, Robert M.
    Kapral, Gary J.
    Murray, Laura W.
    Richardson, Jane S.
    Richardson, David C.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 12 - 21
  • [9] HGVS Recommendations for the Description of Sequence Variants: 2016 Update
    den Dunnen, Johan T.
    Dalgleish, Raymond
    Maglott, Donna R.
    Hart, Reece K.
    Greenblatt, Marc S.
    McGowan-Jordan, Jean
    Roux, Anne-Francoise
    Smith, Timothy
    Antonarakis, Stylianos E.
    Taschner, Peter E. M.
    [J]. HUMAN MUTATION, 2016, 37 (06) : 564 - 569
  • [10] Features and development of Coot
    Emsley, P.
    Lohkamp, B.
    Scott, W. G.
    Cowtan, K.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 : 486 - 501