Recollement of homotopy categories and Cohen-Macaulay modules

被引:34
作者
Iyama, Osamu [1 ]
Kato, Kiriko [3 ]
Miyachi, Jun-ichi [2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Tokyo Gakugei Univ, Dept Math, Koganei, Tokyo 1848501, Japan
[3] Osaka Prefecture Univ, Grad Sch Sci, Naka Ku, Sakai, Osaka 5998531, Japan
关键词
triangulated category; triangle of recollements; homotopy category; Iwanaga-Gorenstein ring; Cohen-Macaulay module; TRIANGULATED CATEGORIES; COMPLEXES; RINGS;
D O I
10.1017/is011003007jkt143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the homotopy category of unbounded complexes with bounded homologies and its quotient category by the homotopy category of bounded complexes. In the case of the homotopy category of finitely generated projective modules over an Iwanaga-Gorenstein ring, we show the existence of a new structure in the above quotient category, which we call a triangle of recollements. Moreover, we show that this quotient category is triangle equivalent to the stable module category of Cohen-Macaulay T-2(R)-modules.
引用
收藏
页码:507 / 542
页数:36
相关论文
共 30 条
[1]  
[Anonymous], 2001, ANN MATH STUDIES
[2]  
[Anonymous], MAXIMAL COHEN UNPUB
[3]  
[Anonymous], 1988, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Notes Series
[4]  
AUSLANDER M, 1991, PROG MATH, V95, P221
[5]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[6]  
Auslander M, 1971, Queen Mary College Mathematics Notes
[7]  
Auslander M., 1989, C P SAM ORS 21 22 MA, V38, P5, DOI [10.24033/msmf.339, DOI 10.24033/MSMF.339]
[8]  
Auslander M., 1969, Memoirs Amer. Math. Soc., V94
[9]  
Auslander M., 1978, DEKKER, V37, P1
[10]  
Beilinson A., 1982, Faisceaux pervers, Asterisque, V100