Hecke operators on differential modular forms mod p

被引:6
作者
Buium, Alexandru [1 ]
Saha, Arnab [1 ]
机构
[1] Univ New Mexico, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
Classical modular forms mod p; Hecke operators; Differential modular forms; ELLIPTIC-CURVES;
D O I
10.1016/j.jnt.2011.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A description is given of all primitive delta-series mod p of order 1 which are eigenvectors of all the Hecke operators nT(kappa)(n), "pT(kappa)(p)", (n, p) = 1, and which are delta-Fourier expansions of delta-modular forms of arbitrary order and weight w with deg(w) = kappa >= 0; this set of delta-series is shown to be in a natural one-to-one correspondence with the set of series mod p (of order 0) which are eigenvectors of all the Hecke operators T kappa+2(n), T kappa+2(p) (n, p) = 1 and which are Fourier expansions of (classical) modular forms of weight equivalent to kappa + 2 mod p - 1. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:966 / 997
页数:32
相关论文
共 17 条
[1]  
[Anonymous], MATH NOTES
[2]   Isogeny covariant differential modular forms and the space of elliptic curves up to isogeny [J].
Barcau, MA .
COMPOSITIO MATHEMATICA, 2003, 137 (03) :237-273
[3]   DIFFERENTIAL CHARACTERS OF ABELIAN-VARIETIES OVER P-ADIC FIELDS [J].
BUIUM, A .
INVENTIONES MATHEMATICAE, 1995, 122 (02) :309-340
[4]  
Buium A, 2000, J REINE ANGEW MATH, V520, P95
[5]   Geometry of p-jets [J].
Buium, A .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (02) :349-367
[6]   Differential eigenforms [J].
Buium, Alexandru .
JOURNAL OF NUMBER THEORY, 2008, 128 (04) :979-1010
[7]  
Buium A, 2012, NUMBER THEORY, ANALYSIS AND GEOMETRY, P111, DOI 10.1007/978-1-4614-1260-1_5
[8]   The ring of differential Fourier expansions [J].
Buium, Alexandru ;
Saha, Arnab .
JOURNAL OF NUMBER THEORY, 2012, 132 (05) :896-937
[9]   Independence of points on elliptic curves arising from special points on modular and Shimura curves, II: local results [J].
Buium, Alexandru ;
Poonen, Bjorn .
COMPOSITIO MATHEMATICA, 2009, 145 (03) :566-602
[10]  
Buium Alexandru., 2005, Math. Surveys Monogr. Volume, V118