ON ASYMPTOTICALLY STABILIZING THE RABINOVICH DYNAMICAL SYSTEM

被引:1
作者
Tudoran, Ramona A. [1 ]
机构
[1] Vasile Goldis Coll Arad, Dept Math, Arad 310158, Romania
关键词
Hamiltonian systems; Rabinovich system; stability theory; dissipation; HAMILTONIAN-SYSTEMS; INTEGRABILITY;
D O I
10.1142/S0219887812200083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we give a method to stabilize asymptotically the nontrivial Lyapunov stable equilibrium states of the Rabinovich dynamical system.
引用
收藏
页数:9
相关论文
共 26 条
  • [1] Abraham R., 1978, Foundations of Mechanics
  • [2] ARNOLD VI, 1965, DOKL AKAD NAUK SSSR+, V162, P975
  • [3] Arnold VI., 1989, MATH METHODS CLASSIC, V2nd, P60, DOI 10.1007/978-1-4757-1693-1
  • [4] Hamiltonian equations in R3
    Ay, A
    Gürses, M
    Zheltukhin, K
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) : 5688 - 5705
  • [5] Asymptotic stability for a class of metriplectic systems
    Birtea, Petre
    Boleantu, Mihai
    Puta, Mircea
    Tudoran, Razvan Micu
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (08)
  • [6] ON THE COMPLETE AND PARTIAL INTEGRABILITY OF NON-HAMILTONIAN SYSTEMS
    BOUNTIS, TC
    RAMANI, A
    GRAMMATICOS, B
    DORIZZI, B
    [J]. PHYSICA A, 1984, 128 (1-2): : 268 - 288
  • [7] The topological structure of the Rabinovich system having an invariant algebraic surface
    Chen, Cheng
    Cao, Jinlong
    Zhang, Xiang
    [J]. NONLINEARITY, 2008, 21 (02) : 211 - 220
  • [8] Chis O., 2007, ARXIV07104583, P1
  • [9] GEOMETRICAL AND DYNAMICAL ASPECTS IN THE THEORY OF RABINOVICH SYSTEM
    Chis, Oana
    Puta, Mircea
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2008, 5 (04) : 521 - 535
  • [10] Cushman R.H., 1977, GLOBAL ASPECTS CLASS