Construction of finite groups

被引:28
作者
Besche, HU [1 ]
Eick, B
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math D, D-52056 Aachen, Germany
[2] Univ Wurzburg, Math Inst, D-97074 Wurzburg, Germany
关键词
D O I
10.1006/jsco.1998.0258
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce three practical algorithms to construct certain finite groups up iosomorphism. The first one can be used to construct all soluble groups of a given order. This method can be restricted to compute the soluble groups with certain properties such as nilpotent, non-nilpotent or supersoluble groups. The second algorithm can be used to determine the groups of order p(n) q with a normal Sylow subgroup for distinct primes p and q. The third method is a general method to construct finite groups which we use to compute insoluble groups. (C) 1999 Academic Press.
引用
收藏
页码:387 / 404
页数:18
相关论文
共 31 条
[1]   The groups of order at most 1000 except 512 and 768 [J].
Besche, HU ;
Eick, B .
JOURNAL OF SYMBOLIC COMPUTATION, 1999, 27 (04) :405-413
[2]  
BETTEN A, 1996, LNCS, V1156, P126
[3]  
CANNON J, 1998, UNPUB SPECIAL PRESEN
[4]  
Cayley A., 1854, PHILOS MAG, V7, P40, DOI DOI 10.1080/14786445408647421
[5]  
CRELLE, 1936, ANGEW MATH, V175, P252
[6]  
EICK B, 1997, DIMACS P GROUPS COMP, P101
[7]  
EICK B, 1996, THESIS RWTH AACHEN
[8]  
Gasch?tz W., 1954, MATH NACHR, V12, P253, DOI DOI 10.1002/MANA.19540120308.428
[9]  
Gaschutz W., 1953, MATH Z, V58, P160, DOI 10.1007/BF01174137
[10]  
Gaschutz W., 1962, Math. Z, V80, P300, DOI [10.1007/BF01162386, DOI 10.1007/BF01162386]