Characterization of Noise Signatures of Involuntary Head Motion in the Autism Brain Imaging Data Exchange Repository

被引:12
作者
Caballero, Carla [1 ]
Mistry, Sejal [2 ]
Vero, Joe [3 ]
Torres, Elizabeth B. [1 ,4 ,5 ]
机构
[1] Rutgers State Univ, Dept Psychol, New Brunswick, NJ USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ USA
[3] Rutgers State Univ, Dept Biomed Engn, New Brunswick, NJ USA
[4] Rutgers State Univ, Cognit Sci Ctr, New Brunswick, NJ 08854 USA
[5] Rutgers State Univ, Computat Biomed Imaging & Modeling Ctr, New Brunswick, NJ 08854 USA
关键词
autism; Asperger's; noise; stochastic process; head motion; resting-state fMRI; FMRI TIME-SERIES; LONG-RANGE CORRELATIONS; SEX-DIFFERENCES; STRIDE-INTERVAL; VARIABILITY; GAIT; FLUCTUATIONS; MOVEMENT; DYNAMICS; DISEASE;
D O I
10.3389/fnint.2018.00007
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The variability inherently present in biophysical data is partly contributed by disparate sampling resolutions across instrumentations. This poses a potential problem for statistical inference using pooled data in open access repositories. Such repositories combine data collected from multiple research sites using variable sampling resolutions. One example is the Autism Brain Imaging Data Exchange repository containing thousands of imaging and demographic records from participants in the spectrum of autism and age-matched neurotypical controls. Further, statistical analyses of groups from different diagnoses and demographics may be challenging, owing to the disparate number of participants across different clinical subgroups. In this paper, we examine the noise signatures of head motion data extracted from resting state fMRI data harnessed under different sampling resolutions. We characterize the quality of the noise in the variability of the raw linear and angular speeds for different clinical phenotypes in relation to age-matched controls. Further, we use bootstrapping methods to ensure compatible group sizes for statistical comparison and report the ranges of physical involuntary head excursions of these groups. We conclude that different sampling rates do affect the quality of noise in the variability of head motion data and, consequently, the type of random process appropriate to characterize the time series data. Further, given a qualitative range of noise, from pink to brown noise, it is possible to characterize different clinical subtypes and distinguish them in relation to ranges of neurotypical controls. These results may be of relevance to the pre-processing stages of the pipeline of analyses of resting state fMRI data, whereby head motion enters the criteria to clean imaging data from motion artifacts.
引用
收藏
页数:13
相关论文
共 36 条
[1]   Sex differences in autism: a resting-state fMRI investigation of functional brain connectivity in males and females [J].
Alaerts, Kaat ;
Swinnen, Stephan P. ;
Wenderoth, Nicole .
SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE, 2016, 11 (06) :1002-1016
[2]  
[Anonymous], 1994, TASK FORC DSM 4 DIAG
[3]   Resting state MEG oscillations show long-range temporal correlations of phase synchrony that break down during finger movement [J].
Botcharova, Maria ;
Berthouze, Luc ;
Brookes, Matthew J. ;
Barnes, Gareth R. ;
Farmer, Simon F. .
FRONTIERS IN PHYSIOLOGY, 2015, 6
[4]   A Neurodevelopmental Perspective on the Research Domain Criteria (RDoC) Framework [J].
Casey, B. J. ;
Oliveri, Mary Ellen ;
Insel, Thomas .
BIOLOGICAL PSYCHIATRY, 2014, 76 (05) :350-353
[5]   Local-scale analysis of cardiovascular signals by Detrended Fluctuations Analysis: Effects of posture and exercise [J].
Castiglioni, Paolo ;
Quintin, Luc ;
Civijian, Andrei ;
Parati, Gianfranco ;
Di Rienzo, Marco .
2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, :5035-+
[6]   Effect of nonstationarities on detrended fluctuation analysis [J].
Chen, Z ;
Ivanov, PC ;
Hu, K ;
Stanley, HE .
PHYSICAL REVIEW E, 2002, 65 (04) :15
[7]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173
[8]   Fractal analyses for 'short' time series: A re-assessment of classical methods [J].
Delignieres, Didier ;
Ramdani, Sofiane ;
Lemoine, Loic ;
Torre, Kjerstin ;
Fortes, Marina ;
Ninot, Gregory .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2006, 50 (06) :525-544
[9]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[10]   Sharing the wealth: Neuroimaging data repositories [J].
Eickhoff, Simon ;
Nichols, Thomas E. ;
Van Horn, John D. ;
Turner, Jessica A. .
NEUROIMAGE, 2016, 124 :1065-1068