A new asymptotic energy expansion method

被引:16
作者
Nanayakkara, A [1 ]
机构
[1] Inst Fundamental Studies, Kandy, Sri Lanka
关键词
D O I
10.1016/S0375-9601(01)00579-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new asymptotic energy expansion (AEE) method is presented for I-D systems. The method is based on power series expansion of the quantum action variable J in energy and can be applied to a wide range of potentials. Contour integrals involved in the method are much simpler than that in WKB methods. Recurrence relations are derived for any potential with scaling property and general integral formulae are presented in terms of Gamma functions. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:39 / 43
页数:5
相关论文
共 11 条
[1]   NUMEROLOGICAL ANALYSIS OF WKB APPROXIMATION IN LARGE ORDER [J].
BENDER, CM ;
OLAUSSEN, K ;
WANG, PS .
PHYSICAL REVIEW D, 1977, 16 (06) :1740-1748
[2]  
Brillouin L, 1926, CR HEBD ACAD SCI, V183, P24
[3]   Regularization of the WKB integrals [J].
Dobrovolsky, GA ;
Tutik, RS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (37) :6593-6599
[4]  
DUNHAM JL, 1832, PHYS REV, V41, P13
[5]   Wave mechanics and half-integral quantisation [J].
Kramers, HA .
ZEITSCHRIFT FUR PHYSIK, 1926, 39 (10/11) :828-840
[6]   Some properties of WKB series [J].
Robnik, M ;
Romanovski, VG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (28) :5093-5104
[7]   WKB expansion for the angular momentum and the Kepler problem: From the torus quantization to the exact one [J].
Robnik, M ;
Salasnich, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (05) :1719-1729
[8]   WKB to all orders and the accuracy of the semiclassical quantization [J].
Robnik, M ;
Salasnich, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (05) :1711-1718
[9]  
ROBNIK M, 2000, PROG THEOR PHYS S, V139
[10]   A generalisation of the quantum constraints for the purposes of the wave mechanics [J].
Wentzel, G .
ZEITSCHRIFT FUR PHYSIK, 1926, 38 (6/7) :518-529