Learning Deep Generative Models

被引:184
|
作者
Salakhutdinov, Ruslan [1 ,2 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3G4, Canada
[2] Univ Toronto, Dept Stat Sci, Toronto, ON M5S 3G4, Canada
来源
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 2 | 2015年 / 2卷
关键词
deep learning; deep belief networks; deep Boltzmann machines; graphical models;
D O I
10.1146/annurev-statistics-010814-020120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many artificial intelligence-related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architectures that involve many layers of nonlinear processing. In this article, we review several popular deep learning models, including deep belief networks and deep Boltzmann machines. We show that (a) these deep generative models, which contain many layers of latent variables and millions of parameters, can be learned efficiently, and (b) the learned high-level feature representations can be successfully applied in many application domains, including visual object recognition, information retrieval, classification, and regression tasks.
引用
收藏
页码:361 / 385
页数:25
相关论文
共 50 条
  • [1] Generative chemistry: drug discovery with deep learning generative models
    Yuemin Bian
    Xiang-Qun Xie
    Journal of Molecular Modeling, 2021, 27
  • [2] Generative chemistry: drug discovery with deep learning generative models
    Bian, Yuemin
    Xie, Xiang-Qun
    JOURNAL OF MOLECULAR MODELING, 2021, 27 (03)
  • [3] Deep learning with the generative models for recommender systems: A survey
    Nahta, Ravi
    Chauhan, Ganpat Singh
    Meena, Yogesh Kumar
    Gopalani, Dinesh
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [4] Deep Generative Learning Models for Cloud Intrusion Detection Systems
    Ly Vu
    Quang Uy Nguyen
    Nguyen, N. Diep
    Dinh Thai Hoang
    Dutkiewicz, Eryk
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 565 - 577
  • [5] Discovering Binary Codes for Documents by Learning Deep Generative Models
    Hinton, Geoffrey
    Salakhutdinov, Ruslan
    TOPICS IN COGNITIVE SCIENCE, 2011, 3 (01) : 74 - 91
  • [6] Learning Deep Generative Models With Doubly Stochastic Gradient MCMC
    Du, Chao
    Zhu, Jun
    Zhang, Bo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (07) : 3084 - 3096
  • [7] A Generative Approach to Generalize Deep Learning Models for Pavement Distress Segmentation
    Abhishek Kumar Prajapati
    Ilgin Guler
    Data Science for Transportation, 2025, 7 (1):
  • [8] Data Augmentation for the Femoral Head Using Generative Deep Learning Models
    Won, Joon Hee
    Goh, Tae Sik
    Lee, Jung Sub
    Lim, Hee Chang
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2025, 49 (02) : 109 - 119
  • [9] Material transformers: deep learning language models for generative materials design
    Fu, Nihang
    Wei, Lai
    Song, Yuqi
    Li, Qinyang
    Xin, Rui
    Omee, Sadman Sadeed
    Dong, Rongzhi
    Siriwardane, Edirisuriya M. Dilanga
    Hu, Jianjun
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (01):
  • [10] Review on generative deep learning models and datasets for intrusion detection systems
    Ketepall G.
    Bulla P.
    1600, International Information and Engineering Technology Association (34): : 215 - 226