Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization

被引:122
作者
Lee, Doo-Won [1 ]
Lee, Jinhwan [2 ]
Sohn, Il Yung [1 ]
Kim, Bo-Yeong [3 ]
Son, Young Min [4 ]
Bark, Hunyoung [3 ]
Jung, Jaehyuck [3 ]
Choi, Minseok [5 ]
Kim, Tae Hyeong [5 ]
Lee, Changgu [2 ,3 ]
Lee, Nae-Eung [1 ,3 ,4 ]
机构
[1] Sungkyunkwan Univ, Dept Adv Mat Sci & Engn, Suwon 440746, Gyunggi Do, South Korea
[2] Sungkyunkwan Univ, Dept Mech Engn, Suwon 440746, Gyunggi Do, South Korea
[3] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Suwon 440746, Gyunggi Do, South Korea
[4] Sungkyunkwan Univ, SAIHST, Suwon 440746, Gyunggi Do, South Korea
[5] LG Elect Adv Res Inst, Future Device R&D Dept, New Mat Team, Seoul 137724, South Korea
基金
新加坡国家研究基金会;
关键词
two-dimensional(2D) materials; MoS2; field-effect transistor; biosensor; deoxyribonucleic acid (DNA) hybridization; SINGLE-LAYER; CARBON NANOTUBE; GRAPHENE; FABRICATION; BIOSENSOR;
D O I
10.1007/s12274-015-0744-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A field-effect transistor (FET) with two-dimensional (2D) few-layer MoS2 as a sensing-channel material was investigated for label-free electrical detection of the hybridization of deoxyribonucleic acid (DNA) molecules. The high-quality MoS2-channel pattern was selectively formed through the chemical reaction of the Mo layer with H2S gas. The MoS2 FET was very stable in an electrolyte and inert to pH changes due to the lack of oxygen-containing functionalities on the MoS2 surface. Hybridization of single-stranded target DNA molecules with single-stranded probe DNA molecules physically adsorbed on the MoS2 channel resulted in a shift of the threshold voltage (V-th) in the negative direction and an increase in the drain current. The negative shift in V-th is attributed to electrostatic gating effects induced by the detachment of negatively charged probe DNA molecules from the channel surface after hybridization. A detection limit of 10 fM, high sensitivity of 17 mV/dec, and high dynamic range of 10(6) were achieved. The results showed that a bio-FET with an ultrathin 2D MoS2 channel can be used to detect very small concentrations of target DNA molecules specifically hybridized with the probe DNA molecules.
引用
收藏
页码:2340 / 2350
页数:11
相关论文
共 56 条
[1]  
Ang P. K., J AM CHEM SOC
[2]   Current trends in nanobiosensor technology [J].
Bellan, Leon M. ;
Wu, Diana ;
Langer, Robert S. .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2011, 3 (03) :229-246
[3]   Graphene Platform for Hairpin-DNA-Based Impedimetric Genosensing [J].
Bonanni, Alessandra ;
Pumera, Martin .
ACS NANO, 2011, 5 (03) :2356-2361
[4]   The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 [J].
Buscema, Michele ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Castellanos-Gomez, Andres .
NANO RESEARCH, 2014, 7 (04) :561-571
[5]   Label-free detection of DNA hybridization using transistors based on CVD grown graphene [J].
Chen, Tzu-Yin ;
Phan Thi Kim Loan ;
Hsu, Chang-Lung ;
Lee, Yi-Hsien ;
Wang, Jacob Tse-Wei ;
Wei, Kung-Hwa ;
Lin, Cheng-Te ;
Li, Lain-Jong .
BIOSENSORS & BIOELECTRONICS, 2013, 41 :103-109
[6]   Sensitivity Limits and Scaling of Bioelectronic Graphene Transducers [J].
Cheng, Zengguang ;
Hou, Junfeng ;
Zhou, Qiaoyu ;
Li, Tianyi ;
Li, Hongbian ;
Yang, Long ;
Jiang, Kaili ;
Wang, Chen ;
Li, Yuanchang ;
Fang, Ying .
NANO LETTERS, 2013, 13 (06) :2902-2907
[7]   Suspended Graphene Sensors with Improved Signal and Reduced Noise [J].
Cheng, Zengguang ;
Li, Qiang ;
Li, Zhongjun ;
Zhou, Qiaoyu ;
Fang, Ying .
NANO LETTERS, 2010, 10 (05) :1864-1868
[8]   Electrical Detection of DNA Hybridization with Single-Base Specificity Using Transistors Based on CVD-Grown Graphene Sheets [J].
Dong, Xiaochen ;
Shi, Yumeng ;
Huang, Wei ;
Chen, Peng ;
Li, Lain-Jong .
ADVANCED MATERIALS, 2010, 22 (14) :1649-+
[9]   Fabrication of Flexible MoS2 Thin-Film Transistor Arrays for Practical Gas-Sensing Applications [J].
He, Qiyuan ;
Zeng, Zhiyuan ;
Yin, Zongyou ;
Li, Hai ;
Wu, Shixin ;
Huang, Xiao ;
Zhang, Hua .
SMALL, 2012, 8 (19) :2994-2999
[10]   Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications [J].
He, Qiyuan ;
Sudibya, Herry Gunadi ;
Yin, Zongyou ;
Wu, Shixin ;
Li, Hai ;
Boey, Freddy ;
Huang, Wei ;
Chen, Peng ;
Zhang, Hua .
ACS NANO, 2010, 4 (06) :3201-3208