Nonisothermal crystallization kinetics of polyoxymethylene/montmorillonite nanocomposite

被引:109
作者
Xu, W
Ge, M
He, P [1 ]
机构
[1] Univ Sci & Technol China, Dept Polymer Sci & Engn, Hefei 230026, Anhui, Peoples R China
[2] Hefei Univ Technol, Coll Chem Engn, Hefei 230009, Peoples R China
关键词
polyoxymethylene; montmorillonite; nanocomposite; nonisothermal crystallization kinetics;
D O I
10.1002/app.2076
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The nonisothermal crystallization kinetics of polyoxymethylene (POM), polyoxymethylene/Na-montmorillonite (POM/Na-MMT), and polyoxymethylene/organic-montmorillonite (POM/organ-MMT) nanocomposites were investigated by differential scanning calorimetry at various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the nonisothermal crystallization process of POM/Na-MMT and POM/organ-MMT nanocomposites. The difference in the values of the exponent n between POM and POM/montmorillonite nanocomposites suggests that the nonisothermal crystallization of POM/Na-MMT and POM/organ-MMT nanocomposites corresponds to a tridimensional growth with heterogeneous nucleation. The values of half-time and the parameter Z(c), which characterizes the kinetics of nonisothermal crystallization, show that the crystallization rate of either POM/Na-MMT or POM/organ-MMT nanocomposite is faster than that of virgin POM at a given cooling rate. The activation energies were evaluated by the Kissinger method and were 387.0, 330.3, and 328.6 kJ/mol for the nonisothermal crystallization of POM, POM/Na-MMT nanocomposite, and POM/organ-MMT nanocomposite, respectively. POM/montmorillonite nanocomposite can be as easily fabricated as the original polyoxymethylene, considering that the addition of montmorillonite, either Na-montmorillonite or organ-montmorillonite, may accelerate the overall nonisothermal crystallization process. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:2281 / 2289
页数:9
相关论文
共 35 条
  • [1] An YX, 1999, J POLYM SCI POL PHYS, V37, P443, DOI 10.1002/(SICI)1099-0488(19990301)37:5<443::AID-POLB4>3.0.CO
  • [2] 2-B
  • [3] POLY(ETHYLENE OXIDE)-SILICATE INTERCALATION MATERIALS
    ARANDA, P
    RUIZHITZKY, E
    [J]. CHEMISTRY OF MATERIALS, 1992, 4 (06) : 1395 - 1403
  • [4] Feng Y, 1998, J APPL POLYM SCI, V69, P2089, DOI 10.1002/(SICI)1097-4628(19980906)69:10<2089::AID-APP20>3.0.CO
  • [5] 2-W
  • [6] NANOSTRUCTURED MATERIALS
    GLEITER, H
    [J]. ADVANCED MATERIALS, 1992, 4 (7-8) : 474 - 481
  • [8] VARIATION OF PEAK TEMPERATURE WITH HEATING RATE IN DIFFERENTIAL THERMAL ANALYSIS
    KISSINGER, HE
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1956, 57 (04): : 217 - 221
  • [9] MECHANICAL-PROPERTIES OF NYLON 6-CLAY HYBRID
    KOJIMA, Y
    USUKI, A
    KAWASUMI, M
    OKADA, A
    FUKUSHIMA, Y
    KURAUCHI, T
    KAMIGAITO, O
    [J]. JOURNAL OF MATERIALS RESEARCH, 1993, 8 (05) : 1185 - 1189
  • [10] LAN T, 1995, CHEM MATER, V7, P2144, DOI 10.1021/cm00059a023