GLOBAL ACTIONS, GROUPOID ATLASES AND APPLICATIONS

被引:0
|
作者
Bak, A. [1 ]
Brown, R. [2 ]
Minian, G. [3 ]
Porter, T. [2 ]
机构
[1] Univ Bielefeld, Dept Math, D-33501 Bielefeld, Germany
[2] Univ Wales, Dept Math, Bangor LL57 1UT, Gwynedd, Wales
[3] Univ Buenos Aires, Dept Matemat, Fac Ciencias Exactas & Nat, RA-1053 Buenos Aires, DF, Argentina
来源
JOURNAL OF HOMOTOPY AND RELATED STRUCTURES | 2006年 / 1卷 / 01期
关键词
Homology; Homotopy; K-theory; Group Action; Groupoid;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Global actions were introduced by A. Bak to give a combinatorial approach to higher K-theory, in which control is kept of the elementary operations through paths and paths of paths. This paper is intended as an introduction to this circle of ideas, including the homotopy theory of global actions, which one obtains naturally from the notion of path of elementary operations. Emphasis is placed on developing examples taken from combinatorial group theory, as well as K-theory. The concept of groupoid atlas plays a clarifying role.
引用
收藏
页码:101 / 167
页数:67
相关论文
共 12 条
  • [1] Classical Invariants for Global Actions and Groupoid Atlases
    Matías L. del Hoyo
    Elias Gabriel Minian
    Applied Categorical Structures, 2008, 16 : 689 - 721
  • [2] Classical Invariants for Global Actions and Groupoid Atlases
    del Hoyo, Matias L.
    Gabriel Minian, Elias
    APPLIED CATEGORICAL STRUCTURES, 2008, 16 (06) : 689 - 721
  • [3] On the Galois map for groupoid actions
    Paques, Antonio
    Tamusiunas, Thaisa
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (03) : 1037 - 1047
  • [4] Galois correspondence for partial groupoid actions
    Lautenschlaeger, Wesley G.
    Tamusiunas, Thaisa
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [5] The Galois correspondence theorem for groupoid actions
    Paques, Antonio
    Tamusiunas, Thaisa
    JOURNAL OF ALGEBRA, 2018, 509 : 105 - 123
  • [6] Local index theory for operators associated with Lie groupoid actions
    Perrot, Denis
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2022, 14 (02) : 297 - 341
  • [7] Groupoid Semidirect Product Fell Bundles II-Actions and Stabilization
    Hall, Lucas
    Kaliszewski, S.
    Quigg, John
    Williams, Dana P.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (03) : 1147 - 1173
  • [8] GROUPOID SEMIDIRECT PRODUCT FELL BUNDLES. I. ACTIONS BY ISOMORPHISMS
    Hall, Lucas
    Kaliszewski, S.
    Quigg, John
    Williams, Dana P.
    JOURNAL OF OPERATOR THEORY, 2023, 89 (01) : 125 - 153
  • [9] SMOOTH GLUING OF GROUP ACTIONS AND APPLICATIONS
    Parkhe, Kiran
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (01) : 203 - 212
  • [10] Global rigidity of higher rank lattice actions with dominated splitting
    Lee, Homin
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (03) : 799 - 828