Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer

被引:226
作者
Lundt, Nils [1 ,2 ]
Klembt, Sebastian [1 ,2 ]
Cherotchenko, Evgeniia [3 ]
Betzold, Simon [1 ,2 ]
Iff, Oliver [1 ,2 ]
Nalitov, Anton V. [3 ]
Klaas, Martin [1 ,2 ]
Dietrich, Christof P. [1 ,2 ]
Kavokin, Alexey V. [3 ,4 ]
Hoefling, Sven [1 ,2 ,5 ]
Schneider, Christian [1 ,2 ]
机构
[1] Univ Wurzburg, Tech Phys, D-97074 Wurzburg, Germany
[2] Univ Wurzburg, Wilhelm Conrad Rontgen Res Ctr Complex Mat Syst, D-97074 Wurzburg, Germany
[3] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[4] SPIN CNR, Viale Politecn 1, I-00133 Rome, Italy
[5] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
EXCITATIONS;
D O I
10.1038/ncomms13328
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe2, hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy-momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons.
引用
收藏
页数:6
相关论文
共 28 条
  • [1] Collective fluid dynamics of a polariton condensate in a semiconductor microcavity
    Amo, A.
    Sanvitto, D.
    Laussy, F. P.
    Ballarini, D.
    del Valle, E.
    Martin, M. D.
    Lemaitre, A.
    Bloch, J.
    Krizhanovskii, D. N.
    Skolnick, M. S.
    Tejedor, C.
    Vina, L.
    [J]. NATURE, 2009, 457 (7227) : 291 - U3
  • [2] [Anonymous], ARXIV160305562
  • [3] [Anonymous], NAT COMMUN
  • [4] Surface plasmon subwavelength optics
    Barnes, WL
    Dereux, A
    Ebbesen, TW
    [J]. NATURE, 2003, 424 (6950) : 824 - 830
  • [5] Brongersma ML, 2007, SPRINGER SER OPT SCI, V131, P1, DOI 10.1007/978-1-4020-4333-8
  • [6] Two-dimensional transition-metal dichalcogenide materials: Toward an age of atomic-scale photonics
    Cao, Linyou
    [J]. MRS BULLETIN, 2015, 40 (07) : 592 - 599
  • [7] Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2
    Chernikov, Alexey
    Berkelbach, Timothy C.
    Hill, Heather M.
    Rigosi, Albert
    Li, Yilei
    Aslan, Ozgur Burak
    Reichman, David R.
    Hybertsen, Mark S.
    Heinz, Tony F.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (07)
  • [8] Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities
    Dufferwiel, S.
    Schwarz, S.
    Withers, F.
    Trichet, A. A. P.
    Li, F.
    Sich, M.
    Del Pozo-Zamudio, O.
    Clark, C.
    Nalitov, A.
    Solnyshkov, D. D.
    Malpuech, G.
    Novoselov, K. S.
    Smith, J. M.
    Skolnick, M. S.
    Krizhanovskii, D. N.
    Tartakovskii, A. I.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [9] Electro optical tuning of Tamm-plasmon exciton-polaritons
    Gessler, J.
    Baumann, V.
    Emmerling, M.
    Amthor, M.
    Winkler, K.
    Hoefling, S.
    Schneider, C.
    Kamp, M.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (18)
  • [10] Effect of longitudinal excitations on surface plasmons
    Kaliteevski, M. A.
    Brand, S.
    Chamberlain, J. M.
    Abram, R. A.
    Nikolaev, V. V.
    [J]. SOLID STATE COMMUNICATIONS, 2007, 144 (09) : 413 - 417