Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat β-tropomyosin gene

被引:169
作者
Chen, CD
Kobayashi, R
Helfman, DM
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[2] SUNY Stony Brook, Mol & Cellular Biol Program, Stony Brook, NY 11790 USA
关键词
RNA processing; cis-acting element; trans-acting factor; heterogeneous nuclear ribonucleoproteins; RNA-protein interaction;
D O I
10.1101/gad.13.5.593
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In the rat beta-tropomyosin (beta-TM) gene, exons 6 and 7 are spliced alternatively in a mutually exclusive manner. Exon 6 is included in mRNA encoding nonmuscle TM-1, whereas exon 7 is used in mRNA encoding skeletal muscle beta-TM. Previously, we demonstrated that a six nucleotide mutation at the 5' end of exon 7, designated as ex-1, activated exon 7 splicing in nonmuscle cells. In this study, we show that the activating effect of this mutation is not the result of creating an exonic splicing enhancer (ESE) or disrupting a putative secondary structure. The sequence in exon 7 acts as a bona fide exonic splicing silencer (ESS), which is bound specifically by a trans-acting factor. Isolation and peptide sequencing reveal that this factor is hnRNP H, a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. Binding of hnRNP H correlates with the ESS activity. Furthermore, addition of antibodies that specifically recognizes hnRNP H to the splicing reactions or partial depletion of hnRNP H from nuclear extract activates exon 7 splicing in vitro and this effect can be reversed by addition of purified recombinant hnRNP E-I. These results indicate that hnRNP H participates in exclusion of exon 7 in nonmuscle cells. The involvement of hnRNP H in the activity of an ESS may represent a prototype for the regulation of tissue- and developmental-specific alternative splicing.
引用
收藏
页码:593 / 606
页数:14
相关论文
共 67 条
[1]   Biochemistry and regulation of pre-mRNA splicing [J].
Adams, MD ;
Rudner, DZ ;
Rio, DC .
CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (03) :331-339
[2]  
AMENDT BA, 1995, MOL CELL BIOL, V15, P4606
[3]  
Ashiya M, 1997, RNA, V3, P996
[4]   ACTIVATION OF C-SRC NEURON-SPECIFIC SPLICING BY AN UNUSUAL RNA ELEMENT INVIVO AND INVITRO [J].
BLACK, DL .
CELL, 1992, 69 (05) :795-807
[5]   REGULATION OF SEXUAL-DIFFERENTIATION IN DROSOPHILA-MELANOGASTER VIA ALTERNATIVE SPLICING OF RNA FROM THE TRANSFORMER GENE [J].
BOGGS, RT ;
GREGOR, P ;
IDRISS, S ;
BELOTE, JM ;
MCKEOWN, M .
CELL, 1987, 50 (05) :739-747
[6]   REGULATION OF ALTERNATIVE SPLICING IN-VIVO BY OVEREXPRESSION OF ANTAGONISTIC SPLICING FACTORS [J].
CACERES, JF ;
STAMM, S ;
HELFMAN, DM ;
KRAINER, AR .
SCIENCE, 1994, 265 (5179) :1706-1709
[7]   A NOVEL BIPARTITE SPLICING ENHANCER MODULATES THE DIFFERENTIAL PROCESSING OF THE HUMAN FIBRONECTIN EDA EXON [J].
CAPUTI, M ;
CASARI, G ;
GUENZI, S ;
TAGLIABUE, R ;
SIDOLI, A ;
MELO, CA ;
BARALLE, FE .
NUCLEIC ACIDS RESEARCH, 1994, 22 (06) :1018-1022
[8]  
Carlo T, 1996, RNA, V2, P342
[9]   The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon N1 to repress the splicing of the intron downstream [J].
Chan, RCC ;
Black, DL .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (08) :4667-4676
[10]   ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI [J].
DIGNAM, JD ;
LEBOVITZ, RM ;
ROEDER, RG .
NUCLEIC ACIDS RESEARCH, 1983, 11 (05) :1475-1489