PRODUCTS OF CONJUGACY CLASSES IN SIMPLE GROUPS

被引:7
作者
Moori, Jamshid [1 ]
Tong-Viet, Hung P. [1 ]
机构
[1] NW Univ Mafikeng, Sch Math Sci, ZA-2735 Mmabatho, South Africa
关键词
Conjugacy class; simplegroups;
D O I
10.2989/16073606.2011.640452
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. For a is an element of G, let a(G) = {a(g) vertical bar g is an element of G} be the conjugacy class of a in G. In this paper, we study a conjecture due to Arad and Herzog which asserts that in a finite non-abelian simple group the product of two nontrivial conjugacy classes is never a single conjugacy class. In particular, we will verify this conjecture for several families of finite simple groups of Lie type.
引用
收藏
页码:433 / 439
页数:7
相关论文
共 12 条
[1]   Symmetric groups and conjugacy classes [J].
Adan-Bante, Edith ;
Verrill, Helena .
JOURNAL OF GROUP THEORY, 2008, 11 (03) :371-379
[2]  
[Anonymous], 1985, Lecture Notes in Mathematics
[3]  
CARTER R.W., 1985, WILEY INTERSCIENCE P
[4]  
Conway J. H., 1985, ATLAS of Finite Groups
[5]   Finite groups with many product conjugacy classes [J].
Dade, Everett C. .
ISRAEL JOURNAL OF MATHEMATICS, 2006, 154 (1) :29-49
[6]  
Enomoto Hikoe, 1972, Osaka J. Math, V9, P75
[7]   A PROOF OF SZEPS CONJECTURE ON NONSIMPLICITY OF CERTAIN FINITE-GROUPS [J].
FISMAN, E ;
ARAD, Z .
JOURNAL OF ALGEBRA, 1987, 108 (02) :340-354
[8]  
Isaacs M., 2006, CHARACTER THEORY FIN
[9]   Almost irreducible tensor squares [J].
Malle, G .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (03) :1033-1051
[10]  
Shahabi M. A., 2003, Groups St Andrews 2001 in Oxford, V305, P496, DOI [10.1017/CBO9780511542787.018, DOI 10.1017/CBO9780511542787.018]