Optogenetic tools for microbial synthetic biology

被引:31
作者
Chia, Natalie [1 ]
Lee, Sang Yup [2 ]
Tong, Yaojun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, State Key Lab Microbial Metab, Joint Int Res Lab Metab & Dev Sci, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Korea Adv Inst Sci & Technol KAIST, BioInformat Res Ctr, Inst BioCentury, Dept Chem & Biomol Engn,BK21 Four Program,BioProc, 291 Daehak Ro, Daejeon 34141, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Optogenetics; Light switch; Synthetic biology; Metabolic engineering; Microbe; Gene expression control; GENE-EXPRESSION SYSTEM; DYNAMIC CONTROL; FLUORESCENT PROTEINS; ESCHERICHIA-COLI; DNA-BINDING; CHROMATIC ACCLIMATION; SIGNALING MECHANISM; STRUCTURAL BASIS; REGULATORY TOOL; OPTICAL CONTROL;
D O I
10.1016/j.biotechadv.2022.107953
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Chemical induction is one of the most common modalities used to manipulate gene expression in living systems. However, chemical induction can be toxic or expensive that compromise the economic feasibility when it comes to industrial-scale synthetic biology applications. These complications have driven the pursuit of better induction systems. Optogenetics technique can be a solution as it not only enables dynamic control with unprecedented spatiotemporal precision but also is inexpensive and eco-friendlier. The optogenetic technique harnesses natural light-sensing modules that are genetically encodable and re-programmable in various hosts. By further engineering these modules to connect with the microbial regulatory machinery, gene expression and protein activity can be finely tuned simply through light irradiation. Recent works on applying optogenetics to microbial synthetic biology have yielded remarkable achievements. To further expand the usability of optogenetics, more optogenetic tools with greater portability that are compatible with different microbial hosts need to be developed. This review focuses on non-opsin optogenetic systems and the current state of optogenetic advancements in microbes, by showcasing the different designs and functions of optogenetic tools, followed by an insight into the optogenetic approaches used to circumvent challenges in synthetic biology.
引用
收藏
页数:23
相关论文
共 233 条
[1]   Engineering of a green-light inducible gene expression system in Synechocystis sp PCC6803 [J].
Abe, Koichi ;
Miyake, Kotone ;
Nakamura, Mayumi ;
Kojima, Katsuhiro ;
Ferri, Stefano ;
Ikebukuro, Kazunori ;
Sode, Koji .
MICROBIAL BIOTECHNOLOGY, 2014, 7 (02) :177-183
[2]  
Allison DG, 2003, BIOFOULING, V19, P139, DOI [10.1080/0892701031000072190, 10.1038/nrmicro2415]
[3]   Choose your partners: dimerization in eukaryotic transcription factors [J].
Amoutzias, Grigoris D. ;
Robertson, David L. ;
Van de Peer, Yves ;
Oliver, Stephen G. .
TRENDS IN BIOCHEMICAL SCIENCES, 2008, 33 (05) :220-229
[4]   Bacterial phytochromes: More than meets the light [J].
Auldridge, Michele E. ;
Forest, Katrina T. .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2011, 46 (01) :67-88
[5]   TOWARD A SCIENCE OF METABOLIC ENGINEERING [J].
BAILEY, JE .
SCIENCE, 1991, 252 (5013) :1668-1675
[6]   Structural Basis of Design and Engineering for Advanced Plant Optogenetics [J].
Banerjee, Sudakshina ;
Mitra, Devrani .
TRENDS IN PLANT SCIENCE, 2020, 25 (01) :35-65
[7]   Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-Control in Bacteria [J].
Baumschlager, Armin ;
Khammash, Mustafa .
ADVANCED BIOLOGY, 2021, 5 (05)
[8]   Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control [J].
Baumschlager, Armin ;
Aoki, Stephanie K. ;
Khammash, Mustafa .
ACS SYNTHETIC BIOLOGY, 2017, 6 (11) :2157-2167
[9]   Temperature-responsive optogenetic probes of cell signaling [J].
Benman, William ;
Berlew, Erin E. ;
Deng, Hao ;
Parker, Caitlyn ;
Kuznetsov, Ivan A. ;
Lim, Bomyi ;
Siekmann, Arndt F. ;
Chow, Brian Y. ;
Bugaj, Lukasz J. .
NATURE CHEMICAL BIOLOGY, 2022, 18 (02) :152-+
[10]   Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation [J].
Benzinger, Dirk ;
Khammash, Mustafa .
NATURE COMMUNICATIONS, 2018, 9